首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxidase and esterase isozymes were investigated during plant regeneration via somatic embryogenesis in Bambusa vulgaris, The transition of non-embryogenic calli to embryogenic calli, somatic embryo development, germination and subsequent flowering of somatic embryo derived shoots were associated with selective expression or repression of isoforms of peroxidase and esterase. Non-embryogenic callus showed six peroxidase and four esterase bands. During somatic embryogenesis and germination of somatic embryos, some bands were suppressed and new isoforms of peroxidase and esterase appeared. During flowering, in addition to four peroxidase bands, a new unique esterase band ‘a’ appeared. Each developmental stage was thus associated with a definite isozyme profile.  相似文献   

2.
3.
4.
Three genotypes of Pearl millet were screened in vitro for induction of embryogenic callus, somatic embryogenesis and regeneration. Shoot apices excised from in vitro germinated seedlings or immature embryos isolated from green house established plants were used as primary explants. The frequency of embryogenic callus initiation was significantly higher in shoot apices in comparison with immature zygotic embryos. Moreover, differences between genotypes were minimal when using shoot apices. Friable embryogenic calli (type II) developed on the initial nodular calli after 1 to 3 months of culture. The frequency of type II callus is related to the composition of the maintenance medium and they were more often found in ageing cultures. The transfer of embryogenic calli onto auxin-free medium was sufficient for inducing somatic embryo development in short-term culture (3 months) while a progressive loss in regeneration potential was observed with increasing time of subcultures. Maturation of embryogenic calli on medium supplemented with activated charcoal, followed by germination of somatic embryos on medium supplemented with gibberellic acid, restored regeneration in long-term cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
松柏类植物的体细胞胚胎发生既是繁育的一种手段,又是研究胚胎发育过程中结构、生理和分子事件的一种重要的模式系统。整个体细胞胚胎发生过程主要包括3个步骤:胚性组织的诱导和增殖、体细胞胚的成熟以及体细胞胚的萌发和转换。过去为了提高胚胎发育过程所做的努力主要都集中在胚的成熟阶段,这是因为一直认为能否成功再生的关键在于胚发育成熟阶段的处理。然而,在过去几年里,结合生理生化以及分子生物学的研究发现,胚胎发生的早期阶段对于完成整个发育过程也是至关重要的,早期阶段培养条件的优化可以显著提高培养过程中体细胞胚的数量和质量。此外,萌发过程培养条件的调节对于提高成熟体细胞胚的萌发率和转换率也很重要。因此,这些新的研究成果对于改善松柏类植物体细胞胚胎发生中的胚的诱导率和转换率低的现象具有重要的意义。  相似文献   

6.
Detailed expression analysis of the Norway spruce (Picea abies [L.] Karst) Viviparous 1 (Pavp1) and p34cdc2 (cdc2Pa) genes was carried out during somatic embryogenesis. Pavp1, a gene associated with embryo development, was expressed in proliferating embryogenic suspension cultures in the absence of exogenous ABA. When somatic embryo formation was promoting by blocking proliferation, Pavp1 expression was reduced. During maturation, exogenous ABA induced increased Pavp1 expression, which peaked at the early cotyledonary stage of somatic embryogenesis. Following partial desiccation of mature somatic embryos at high relative humidity, Pavp1 expression persisted under germination conditions. Pavp1 expression was also detected in non-dormant immature male strobili and dormant terminal buds. These data confirm the functional conservation of Pavp1 during the evolution of seed plants and extend its function beyond the embryo. Cdc2Pa, a gene associated with the cell cycle, was up-regulated when the proliferation of embryogenic cells was blocked. Expression was again up-regulated in early embryogeny and again during germination. The implications of this up-regulation of cdc2Pa are discussed.  相似文献   

7.
以欧石楠茎段为外植体,研究其体细胞胚胎发生和植株再生。对影响茎段不定芽分化及胚性愈伤组织诱导的主导因子进行比较分析,并研究其体胚萌发、生根及移栽;同时,采用树脂切片法对茎段脱分化产生胚性愈伤组织及体胚发育过程进行组织细胞学观察。结果表明,接种在1/2WPM基本培养基上的茎段,胚性愈伤组织诱导率为88.7%,显著高于其他处理,不定芽诱导率可达90.6%,平均分化倍数为3.6个,平均分化苗高3.82cm;体细胞经过成熟培养后。在添加1.0mg·L-1 ZT和0.3mg·L-1 IBA的1/2WPM培养基上萌发,萌发的体胚在I/2WPM附加0.2mg·L-1 NAA和0.3mg·L-1 IBA的培养基上形成完整的体胚苗植株,体胚苗生根率达到87.4%,经炼苗后移栽到蛭石:珍珠岩=3:1(V/V)的栽培基质中,成活率可达63.7%。在显微镜下可观察到球形胚、心形胚、鱼雷形胚和子叶形胚;体细胞胚以间接方式发生,表现为愈伤组织外层细胞直接发生和愈伤组织组织内部细胞发生。  相似文献   

8.
Somatic embryogenesis is a reliable and important tool, and the relevant genes controlling this process act as vital roles through the whole development of somatic embryos. However, regeneration via somatic embryogenesis in Chinese chestnut has been impeded and its molecular mechanism is not known. Therefore, firstly we described a protocol for somatic embryo initiation, development, maturation and germination. Embryogenic calli were obtained in embryo initiation medium containing 1.8 μM 2,4-D and 1.1 μM 6-BA, and then were transferred to embryo development medium without any hormones for at least 4 weeks, until cotyledonary embryos appeared. Next, the somatic embryos were transferred to embryo maturation medium containing Gamborg’s B-5 Basal Salt Mixture with 0.5 μM NAA and 0.5 μM 6-BA for 3 weeks. Finally, these mature embryos were germinated in embryo germination medium consisting of WPM with 0.5 μM NAA and 0.5 μM 6-BA, resulting in shoot regeneration with a 2.1% conversion rate. Additionally, eight embryogenesis-related genes were identified, and the expression profiles of these genes during embryogenesis were analyzed via quantitative real-time RT-PCR (qRT-PCR). The CmSERK, CmLEC1, CmWUS and CmAGL15 genes exhibited high expression in the initial embryo stages, which inferred that these genes played key roles during the initiation of embryogenesis. Studies on embryogenesis-related genes will provide an insight for further elucidating molecular mechanism during somatic embryogenesis of Chinese chestnut. Furthermore, the successful establishment of a somatic embryo regeneration system for Chinese chestnut will lay a significant foundation for a stable genetic transformation system and genetic improvement.  相似文献   

9.
Summary A culture procedure using temporary immersion in a liquid medium was tested for somatic embryogenesis of Hevea brasiliensis (Müll. Arg.). Embryogenic callus was placed under regeneration conditions, either on a gelled medium (Phytagel, Sigma, St. Louis, MO) or in a container designed for temporary immersion. The latter technique has some advantages over the use of a gelled medium during both the early steps of somatic embryogenesis, i.e., embryo development, and later on, i.e., during maturation, desiccation and germination. Somatic embryo production in a liquid medium was three to four times greater than on a semi-solid medium: 400 embryos/g fresh weight under the best embryogenesis induction conditions. Somatic embryogenesis had to be initiated on a gelled medium before the embryogenic callus was transferred to temporary immersion, and the amounts of 3,4- dichlorophenoxyacetic acid and N6-benzyladenine had to be reduced. Temporary immersion resulted in substantially more consistent, synchronized somatic embryo development, reducing the number of abnormal embryos by half and stimulating germination. All of the late events could be carried out in the temporary immersion container. Effective drying conditions were achieved after 12 wk without immersion and without selection of the embryos. Temporary immersion during germination greatly stimulated root development (+60%) and epicotyl emergency (+35%), combined with increased synchronization and a substantially reduced workload.  相似文献   

10.
11.
The effects of methyl jasmonate (MeJA) in relation to abscisic acid (ABA) on different phases of somatic embryogenesis were studied in Medicago sativa L. Different concentrations of both the growth inhibitors (0.0, 0.5, 5.0, 50.0 and 500.0 μM) were tested in five distinct phases of somatic embryogenesis, viz., induction, proliferation, differentiation, maturation and regeneration. Like ABA, MeJA also inhibited callus induction, callus growth, proliferation of embryogenic suspension as well as germination and conversion of somatic embryos. However, its inhibitory effects on various phases of somatic embryogenesis were less pronounced as compared to that due to ABA. In contrast to ABA, MeJA did not have any significant influence on the development of somatic embryos when applied in the differentiation phase. The study showed that ABA used routinely as an inducer of somatic embryo maturation in M. sativa could not be replaced by MeJA.  相似文献   

12.
The production of ethylene and the endogenous content of polyamines (PAs) have been recorded during the early development, maturation and germination of holm oak (Quercus ilex L.) somatic embryos. Ethylene production was high in embryogenic callus, immature somatic embryos and in explants showing secondary embryogenesis, while it was lower in mature and germinating somatic embryos. A higher ethylene production was also associated to the process of secondary embryogenesis. The exogenous application of 1-amino-1-cyclohexane carboxylic acid was not significantly effective on the production of ethylene by holm oak somatic embryos. Total PAs were more abundant in embryogenic callus and in both somatic and zygotic immature embryos, decreasing later on in the mature and germination phases. Immature somatic embryos of holm oak and immature zygotic embryos contain high levels of spermidine (Spd), which decreased during maturation and germination. Spermine (Spm) concentration was lower than that of Spd. Spm was more abundant in embryogenic callus and immature zygotic embryos than in mature embryos. Ethylene production did not seem to interfere with PA metabolism.  相似文献   

13.
Hypocotyls of cotton (Gossypium hirsutum L.) cultivars cv. YZ-1, Coker 312 and Coker 201 were inoculated on Murashige and Skoog callus induction medium. YZ-1 exhibited a very high regeneration potential, with 81.9 % of the explants inoculated differentiated into embryogenic callus within 8–10 weeks. During the process of callus maintenance (subculture for 1 to 3 years), the total embryos number in Coker 312 and Coker 201 calli dropped sharply, and the percentage of embryo germination decreased. On the contrary, the callus of YZ-1 consistently maintains a high frequency of plant regeneration after long-time subculture. Transgenic kanamycin-resistant calli of Coker 201 partially lost the ability of somatic embryogenesis and plant regeneration. The stress produced by the transformation procedure slightly affected somatic embryogenesis and plant regeneration of YZ-1, which showed minimum loss of plant regeneration ability.  相似文献   

14.
An efficient somatic embryogenesis system has been established in Catharanthus roseus (L.) G. Don in which primary and secondary embryogenic calluses were developed from hypocotyls and primary cotyledonary somatic embryos (PCSEs), respectively. Two types of calluses were different in morphology and growth behaviour. Hypocotyl-derived embryogenic callus (HEC) was friable and fast-growing, while secondary callus derived from PCSE was compact and slow-growing. HEC differentiated into somatic embryos which proliferated quickly on medium supplemented with NAA (1.0 mg l−1) and BA (1.5 mg l−1). Although differentiation and proliferation of somatic embryos were faster in primary HEC, maturation and germination efficiency were better in somatic embryos developed from primary cotyledonary somatic embryo-derived secondary embryogenic callus (PCSEC). At the biochemical level, two somatic embryogenesis systems were different. Both primary and secondary/adventive somatic embryogenesis and the role of plant growth regulators in two modes of somatic embryo formation have been discussed.  相似文献   

15.
Somatic embryogenesis is a complex developmental process that offers great potential for plant propagation. Although many studies have shown that the generation of embryonic cells from somatic cells is accompanied by the synthesis of RNA and DNA and by elevated enzymatic activity, the mechanism of the onset of somatic embryogenesis is not well understood. cDNA-amplified fragment length polymorphism analysis was used to evaluate the gene expression pattern in embryogenic and non-embryogenic of the inbred maize line H99 during the process of embryogenesis. We identified a total of 101 candidate genes associated with the formation of maize embryonic calli. Based on the sequence analysis, these genes included 53 functionally-annotated TDFs involved in such processes as energy production and conversion, cell division and signal transduction, suggesting that somatic embryogenesis undergoes a complex process. Two full-length cDNA sequences, encoding KHCP (kinesin heavy chain like protein) and TypA (tyrosine phosphorylation protein A), and partial sequences, encoding ARF-GEP (guanine nucleotide-exchange protein of ADP ribosylation factor) homologs, were isolated from embryonic calli of maize and named ZmKHCP, ZmTypA and ZmARF-GEP, respectively. Finally, the real-time qRT-PCR results showed that the expression levels of the three genes were significantly higher in the embryonic calli than the non-embryonic calli. Thus, this study provides important clues to understanding the induction of somatic embryogenesis in maize. The candidate genes associated with the formation of embryonic calli may offer additional insights into the mechanism of somatic embryogenesis, and further research on the three candidate genes may determine their role in increasing the rate of induction of embryonic calli, which may aid in the development of cultivars through transgenic breeding.  相似文献   

16.
百合体细胞胚胎发生和植株再生   总被引:2,自引:0,他引:2  
以切花百合(Lilium)品种‘黄天霸’(‘Manissa’)花器官为外植体诱导体细胞胚胎发生与植株再生。结果表明,不同花器官、不同激素配比对愈伤组织形成均具有显著影响。花丝为最佳外植体,激素对愈伤组织诱导的影响效应为NAA>6-BA>2,4-D,最适培养基为MS+1.0 mg.L-1NAA+0.2 mg.L-16-BA;激素诱导体细胞胚胎发生的影响效应为2,4-D>KT>6-BA,最佳培养基配方为MS+1.0 mg.L-12,4-D+0.2 mg.L-1KT+1.0 mg.L-16-BA;MS培养基添加IBA可促进体细胞胚萌发成苗,体细胞胚芽成苗的最佳培养基为MS+0.2 mg.L-16-BA+1.0 mg.L-1IBA。  相似文献   

17.
The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E) and non-embryogenic (NE) callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L-1) of activated charcoal (AC). Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L-1 AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days) in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project), including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus.  相似文献   

18.
19.
Summary The frequency of initiation of friable, embryogenic callus from immature embryos of the elite maize inbred line B73 was increased dramatically by introgression of chromosomal segments from the inbred line A188 through classical backcross breeding. Less than 0.2% of the immature B73 embryos tested (5 of 3,710) formed embryogenic callus. The breeding scheme consisted of six generations of backcrossing to B73 with selection at each generation for high frequency initiation of embryogenic cultures. BC6 individuals were selfed for four generations to select homozygous lines. The average embryogenic culture initiation frequency increased to 46% (256/561). Nearly all (91%) of the embryos from one BC6 S4 plant formed embryogenic cultures. RFLP analysis was used to determine the locations and effects of the introgressed A188 chromosomal segments. Five segments were retained through at least the fifth backcross generation. The hypothesis that one or more of these five regions contains genes controlling somatic embryogenesis in maize was tested using an F2 population of the cross A188 X Mo17. A set of five DNA markers (three of them linked) explained 82% of the observed phenotypic variance for percentage of immature embryos forming embryognic callus. Four of the five markers were located in or near introgressed A188 chromosome segments.The region marked by probe c595 on the long arm of chromosome 9 was highly associated with several measures of in vitro culture response (percent embryogenic embryos, plants per embryo, and plants per embryogenic embryo). We propose that there is a major gene (or genes) in this region in A188 that promotes embryogenic callus initiation and plant regeneration in B73, Mo17, and probably many other recalcitrant inbred lines of maize.  相似文献   

20.
A method for quantitative determination of the level of somatic embryogenesis in Norway spruce embryogenic callus is described. Embryogenic callus was dispersed in liquid by agitation and plated in a thin layer of medium containing 0.6% low melting point agarose. The number of embedded somatic embryos per mg of callus ranged from 0.2 to 1.5 among 11 embryogenic callus lines surveyed. Each callus line was derived from an individual immature embryo explant. Further development occurred as somatic embryos grew out of the agarose layer. This method was useful for identifying highly embryogenic callus lines among phenotypically similar lines, and should be useful for quantitatively determining the effect of medium and growth regulator modifications on somatic embryo density and developmental capacity.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - IBA indole-3-butyric acid - ABA abscisic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号