首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
Livin promotes Smac/DIABLO degradation by ubiquitin-proteasome pathway   总被引:13,自引:0,他引:13  
Livin, a member of the inhibitor of apoptosis protein (IAP) family, encodes a protein containing a single baculoviral IAP repeat (BIR) domain and a COOH-terminal RING finger domain. It has been reported that Livin directly interacts with caspase-3 and -7 in vitro and caspase-9 in vivo via its BIR domain and is negatively regulated by Smac/DIABLO. Nonetheless, the detailed mechanism underlying its antiapoptotic function has not yet been fully characterized. In this report, we provide, for the first time, the evidence that Livin can act as an E3 ubiquitin ligase for targeting the degradation of Smac/DIABLO. Both BIR domain and RING finger domain of Livin are required for this degradation in vitro and in vivo. We also demonstrate that Livin is an unstable protein with a half-life of less than 4 h in living cells. The RING domain of Livin promotes its auto-ubiquitination, whereas the BIR domain is likely to display degradation-inhibitory activity. Mutation in the Livin BIR domain greatly enhances its instability and nullifies its binding to Smac/DIABLO, resulting in a reduced antiapoptosis inhibition. Our findings provide a novel function of Livin: it exhibits E3 ubiquitin ligase activity to degrade the pivotal apoptotic regulator Smac/DIABLO through the ubiquitin-proteasome pathway.  相似文献   

2.
Livin, a novel inhibitor of apoptosis protein family member   总被引:204,自引:0,他引:204  
A novel human inhibitor of apoptosis protein (IAP) family member termed Livin was identified, containing a single baculoviral IAP repeat (BIR) domain and a COOH-terminal RING finger domain. The mRNA for livin was not detectable by Northern blot in most normal adult tissues with the exception of the placenta, but was present in developmental tissues and in several cancer cell lines. Highest levels were observed in two melanoma-derived cell lines, G361 and SK-Mel29. Transfection of livin in HeLa cells resulted in protection from apoptosis induced by expression of FADD, Bax, RIP, RIP3, and DR6. Similar to other IAP family members, the anti-apoptotic activity of Livin was dependent on the BIR domain. Livin was also capable of inhibiting DEVD-like caspase activity triggered by tumor necrosis factor-alpha. In vitro binding studies demonstrated a direct interaction between Livin and the active form of the downstream caspases, caspase-3 and -7, that was dependent on the BIR domain of Livin. In addition, the unprocessed and cleaved forms of caspase-9 co-immunoprecipitated with Livin in vivo, and recombinant Livin could inhibit the activation of caspase-9 induced by Apaf-1, cytochrome c, and dATP. The subcellular distribution of the transfected Livin was analyzed by immunofluorescence. Both Livin and Survivin were expressed in the nucleus and in a filamentous pattern throughout the cytoplasm. In contrast to the apoptotic activity, the COOH-terminal RING domain mediated its subcellular localization patterning. Further studies found that transfection of an antisense construct against livin could trigger apoptosis specifically in cell lines expressing livin mRNA. This was associated with an increase in DNA fragmentation and in DEVD-like caspase activity. Thus, disruption of Livin may provide a strategy to induce apoptosis in certain cancer cells.  相似文献   

3.
杆状病毒IAP基因的结构、功能及其进化   总被引:2,自引:0,他引:2  
张瑞  姚青  彭建新  洪华珠   《微生物学通报》2006,33(1):128-132
杆状病毒的IAP(inh ib itor of apoptosis prote in)基因是最早鉴定的IAP家族基因,具有B IR和R ING结构域特征,与杆状病毒P35基因有相似抗细胞凋亡功能,但在结构和作用机制上存在差异。系统分析表明,杆状病毒IAP基因可能是病毒与鳞翅目昆虫在长期的进化过程中从宿主基因组中获得的。  相似文献   

4.
Although human c-IAP1 and c-IAP2 have been reported to possess antiapoptotic activity against a variety of stimuli in several mammalian cell types, we observed that full-length c-IAP1 and c-IAP2 failed to protect cells from apoptosis induced by Bax overexpression, tumor necrosis factor alpha treatment or Sindbis virus infection. However, deletion of the C-terminal RING domains of c-IAP1 and c-IAP2 restored antiapoptotic activity, indicating that this region negatively regulates the antiapoptotic function of the N-terminal BIR domain. This finding is consistent with the observation by others that the spacer region and RING domain of c-IAP1 functions as an E3 ligase, promoting autoubiquitination and degradation of c-IAP1. In addition, we found that c-IAP1 is cleaved during apoptosis to 52- and 35-kDa fragments. Both fragments contain the C-terminal end of c-IAP1 including the RING finger. In vitro cleavage of c-IAP1 with apoptotic cell extracts or with purified recombinant caspase-3 produced similar fragments. Furthermore, transfection of cells with the spacer-RING domain alone suppressed the antiapoptotic function of the N-terminal BIR domain of c-IAP1 and induced apoptosis. Optimal death-inducing activity of the spacer-RING required both the spacer region and the zinc-binding RING domain of c-IAP1 but did not require the caspase recruitment domain located within the spacer region. To the contrary, deletion of the caspase recruitment domain increased proapoptotic activity, apparently by stabilizing the C-terminal fragment.  相似文献   

5.
We cloned a novel inhibitor of apoptosis protein (IAP) family member, BmIAP, from Bombyx mori BmN cells. BmIAP contains two baculoviral IAP repeat (BIR) domains followed by a RING domain. BmIAP shares striking amino acid sequence similarity with lepidopteran IAPs, SfIAP and TnIAP, and with two baculoviral IAPs, CpIAP and OpIAP, suggesting evolutionary conservation. BmIAP blocks programmed cell death (apoptosis) in Spodoptera frugiperda Sf-21 cells induced by p35 deficient Autographa californica nucleopolyhedrovirus (AcMNPV). This anti-apoptotic function requires both the BIR domains and RING domain of BmIAP. In mammalian cells, BmIAP inhibits Bax induced but not Fas induced apoptosis. Further biochemical data suggest that BmIAP is a specific inhibitor of mammalian caspase-9, an initiator caspase in the mitochondria/cytochrome-c pathway, but not the downstream effector proteases, caspase-3 and caspase-7. These results suggest that suppression of apoptosis by lepidopteran IAPs in insect cells may involve inhibition of an upstream initiator caspase in the conserved mitochondria/cytochrome-c pathway for apoptosis.  相似文献   

6.
The defining structural motif of the inhibitor of apoptosis (iap) protein family is the BIR (baculovirus iap repeat), a highly conserved zinc coordination domain of approximately 70 residues. Although the BIR is required for inhibitor-of-apoptosis (IAP) function, including caspase inhibition, its molecular role in antiapoptotic activity in vivo is unknown. To define the function of the BIRs, we investigated the activity of these structural motifs within Op-IAP, an efficient, virus-derived IAP. We report here that Op-IAP(1-216), a loss-of-function truncation which contains two BIRs but lacks the C-terminal RING motif, potently interfered with Op-IAP's capacity to block apoptosis induced by diverse stimuli. In contrast, Op-IAP(1-216) had no effect on apoptotic suppression by caspase inhibitor P35. Consistent with a mechanism of dominant inhibition that involves direct interaction between Op-IAP(1-216) and full-length Op-IAP, both proteins formed an immunoprecipitable complex in vivo. Op-IAP also self-associated. In contrast, the RING motif-containing truncation Op-IAP(183-268) failed to interact with or interfere with Op-IAP function. Substitution of conserved residues within BIR 2 caused loss of dominant inhibition by Op-IAP(1-216) and coincided with loss of interaction with Op-IAP. Thus, residues encompassing the BIRs mediate dominant inhibition and oligomerization of Op-IAP. Consistent with dominant interference by interaction with an endogenous cellular IAP, Op-IAP(1-216) also lowered the survival threshold of cultured insect cells. Taken together, these data suggest a new model wherein the antiapoptotic function of IAP requires homo-oligomerization, which in turn mediates specific interactions with cellular apoptotic effectors.  相似文献   

7.
Deterin, a new inhibitor of apoptosis from Drosophila melanogaster   总被引:5,自引:0,他引:5  
  相似文献   

8.
Reaper (RPR), HID, and GRIM activate apoptosis in cells programmed to die during Drosophila development. We have previously shown that transient overexpression of RPR in the lepidopteran SF-21 cell line induces apoptosis and that members of the inhibitor of apoptosis (IAP) family of antiapoptotic proteins can inhibit RPR-induced apoptosis and physically interact with RPR through their BIR motifs (D. Vucic, W. J. Kaiser, A. J. Harvey, and L. K. Miller, Proc. Natl. Acad. Sci. USA 94:10183–10188, 1997). In this study, we found that transient overexpression of HID and GRIM also induced apoptosis in the SF-21 cell line. Baculovirus and Drosophila IAPs blocked HID- and GRIM-induced apoptosis and also physically interacted with them through the BIR motifs of the IAPs. The region of sequence similarity shared by RPR, HID, and GRIM, the N-terminal 14 amino acids of each protein, was required for the induction of apoptosis by HID and its binding to IAPs. When stably overexpressed by fusion to an unrelated, nonapoptotic polypeptide, the N-terminal 37 amino acids of HID and GRIM were sufficient to induce apoptosis and confer IAP binding activity. However, GRIM was more complex than HID since the C-terminal 124 amino acids of GRIM retained apoptosis-inducing and IAP binding activity, suggesting the presence of two independent apoptotic motifs within GRIM. Coexpression of IAPs with HID stabilized HID levels and resulted in the accumulation of HID in punctate perinuclear locations which coincided with IAP localization. The physical interaction of IAPs with RPR, HID, and GRIM provides a common molecular mechanism for IAP inhibition of these Drosophila proapoptotic proteins.  相似文献   

9.
The inhibitor of apoptosis proteins (IAP) plays an important role in cell apoptosis. We cloned two novel IAP family members, Ap-iap1 and Ap-iap2, from Antheraea pernyi nucleopolyhedrovirus (ApNPV) genome. Ap-IAP1 contains two baculoviral IAP repeat (BIR) domains followed by a RING domain, but Ap-IAP2 has only one BIR domain and RING. The result of transient expression in Spodoptera frugiperda (Sf21) showed that Ap-iap1 blocked cell apoptosis induced by actinomycin D treatment and also rescued the p35 deficient Autographa californica nucleopolyhedrovirus (AcNPV) to replicate in Sf9 cells, while Ap-iap2 does not have this function. Several Ap-IAP1 truncations were constructed to test the activity of BIRs or RING motif to inhibit cell apoptosis. The results indicated that BIRs or RING of Ap-IAP1 had equally function to inhibit cell apoptosis. Therefore deletion of above both of the above domains could not block apoptosis induced by actinomycin D or rescue the replication of AcMNPVΔp35. We also screened two phage-display peptides that might interact with Ap-IAP1.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号