共查询到20条相似文献,搜索用时 62 毫秒
1.
大兴安岭北部森林景观对气候变化的响应 总被引:1,自引:0,他引:1
将森林景观模型LANDIS和林窗模型LINKAGES相结合,模拟气候变化对大兴安岭森林景观的影响,并比较分析了气候变化对森林景观的直接影响与通过火干扰改变所产生的影响.结果表明:维持当前气候和火干扰情景的条件下,森林景观保持动态平衡,兴安落叶松占据优势树种地位,未来气候情景下,兴安落叶松和偃松的分布面积降低,白桦、山杨、甜杨和钻天柳等阔叶树以及樟子松的分布面积增加,森林景观的破碎化和多样性增加;气候变化对森林景观的影响具有时滞性和长期性,气候变暖有利于大部分树种(兴安落叶松除外)的生长,火干扰增加使山杨、甜杨和钻天柳等分布面积增加,使兴安落叶松、樟子松和偃松的分布面积明显降低;火干扰增加对森林景观的影响几乎与气候变化的直接影响同等重要,其加剧了气候变化对森林组成、森林景观破碎化和森林景观多样性的直接影响. 相似文献
2.
预测森林地上生物量对气候变化和林火干扰的响应是陆地生态系统碳循环研究的重要内容,气温、降水等因素的改变和气候变暖导致林火干扰强度的变化将会影响森林生态系统的碳库动态.东北森林作为我国森林的重要组成部分,对气候变化和林火干扰的响应逐渐显现.本文运用LANDIS PRO模型,模拟气候变化对大兴安岭森林地上生物量的影响,并比较分析了气候变暖对森林地上生物量的直接影响与通过林火干扰强度改变所产生的影响.结果表明: 未来气候变暖和火干扰增强情景下,森林地上生物量增加;当前气候条件和火干扰下,研究区森林地上生物量为(97.14±5.78) t·hm-2;在B1F2预案下,森林地上生物量均值为(97.93±5.83) t·hm-2;在A2F3预案下,景观水平第100~150和150~200年模拟时期内的森林地上生物量均值较高,分别为(100.02±3.76)和(110.56±4.08) t·hm-2.与当前火干扰相比,CF2预案(当前火干扰增加30%)在一定时期使景观水平地上生物量增加(0.56±1.45) t·hm-2,CF3预案(当前火干扰增加230%)在整个模拟阶段使地上生物量减少(7.39±1.79) t·hm-2.针叶、阔叶树种对气候变暖的响应存在差异,兴安落叶松和白桦生物量随气候变暖表现为降低趋势,而樟子松、云杉和山杨的地上生物量则随气候变暖表现出不同程度的增加;气候变暖对针阔树种的直接影响具有时滞性,针叶树种响应时间比阔叶树种迟25~50年.研究区森林对高CO2排放情景下气候变暖和高强度火干扰的共同作用较为敏感,未来将明显改变研究区森林生态系统的树种组成和结构. 相似文献
3.
空间异质性对样地数据空间外推的影响 总被引:1,自引:0,他引:1
应用模型结合的方法模拟了3个空间异质性等级预案下反应变量(气候变化下景观水平的树种分布面积)的变化情况,并分析模拟结果在预案之间的差异性,探讨了环境空间异质性对样地观测到的树种对气候变化响应向更大空间尺度外推的影响.结果表明:空间异质性在一般情况下对样地数据向土地类型尺度外推没有影响,而对样地尺度外推到海拔带尺度的影响则有较复杂的情况.对于对气候变化不敏感的树种以及非地带性树种,空间异质性对样地数据向海拔带尺度外推没有影响;对于大多数对气候变化敏感的地带性树种而言,空间异质性对样地数据向海拔带尺度外推则有影响. 相似文献
4.
虫害和林火是森林生态系统的两种主要干扰类型,各种干扰在大时空尺度上存在一定的交互作用.本文采用空间直观景观模型LANDIS模拟虫害和林火在300年内的交互作用.结果表明:虫害干扰降低了细可燃物载量,提高了模拟前期(0~100 a)和中期(100~200 a)的粗可燃物载量,降低了模拟前期和中期的林火频率,不同干扰预案模拟后期(200~300 a)火烧频率的结果比较接近;虫害干扰降低了模拟前期和后期的火烧强度,增加了模拟中期的火烧强度,提高了模拟中期的森林火险等级,降低了模拟前期和后期的火险等级.人类灭火可增加虫害的发生面积,因此建议森林管理部门采取适当的防虫措施,不可只注重灭火,可以采取可燃物去除和计划火烧等方式管理林火,促进森林生态系统的可持续发展. 相似文献
5.
水曲柳幼苗根系对土壤养分和水分空间异质性的反应 总被引:12,自引:1,他引:12
通过沙培试验方法,研究了温室条件下水曲柳幼苗在施肥和浇水区,非施肥和非浇水区中根系生长,生物量分布,地下部分与地上部分关系,细根直径等特征。结果表明,土壤养分和水分的空间异质性对水曲柳幼苗根系生长和分布有明显影响。在施肥区和浇水区根系生长快,密度大,生物量高,而在非施肥和非浇水区根系生长受到抑制,根系密度小,生物量低,与非施肥区相比,施肥区细根直径下降,有利于根系对养分和水分的运输,但是在非浇水区 相似文献
6.
施氮量对小麦叶片硝酸还原酶活性、一氧化氮含量和气体交换的影响 总被引:3,自引:0,他引:3
研究了不同施氮量对冬小麦分蘖到抽穗期叶片硝酸还原酶(NR)活性、一氧化氮(NO)含量、气体交换参数和籽粒产量的影响.结果表明:叶片光合速率(Pn)、蒸腾速率(Tr)、瞬时水分利用效率(IWUE)和产量均随施氮量的增加呈先升高后降低的趋势,在180 kg·hm-2氮处理时达到最高.随施氮量的增加,叶片NR活性提高; 在分蘖期和拔节期,叶片NR活性与NO含量呈显著线性相关(R2≥0.68,n=15),NO含量和气孔导度(Gs)呈显著正二次相关(R2≥0.43,n=15);低氮处理下,NR活性较低使叶片NO含量维持在较低水平,促进气孔开放,高氮处理下,NR活性较高使叶片NO含量增加,诱导气孔关闭;在抽穗期叶片NR活性和NO含量无显著相关关系,虽然NO含量和Gs也呈显著正二次相关(R2≥0.36,n=15),但不能通过施氮提高NR活性来影响叶片NO含量,进而调节叶片气孔行为.合理施氮使小麦叶片NO含量维持在较低水平,可提高叶片Gs、Tr和IWUE,增强作物抗旱能力,促进光合作用,提高小麦产量. 相似文献
7.
景观空间异质性与生态系统服务的关系极为密切,适当调整景观空间异质性有助于生态系统服务的持续形成与稳定供给。研究景观空间异质性和生态系统服务形成与供给之间的相互影响作用及响应机制具有重要的理论与现实意义,是保护生物多样性、管理生态系统服务与优化景观空间配置的基础。现有研究大多在不同尺度上探讨了景观格局与生态过程或生态系统服务间的相互影响关系,而缺乏景观格局-生态过程-生态系统服务三者间有效联结等方面的研究。景观空间异质性是怎样直接或间接地作用于生态系统服务形成与供给的,目前还没有一个较为明确的解释。因此,通过分析国内外文献,回顾了景观格局或景观空间异质性与生态系统服务之间关系的研究进展、研究内容和研究方法;从景观组成、景观构型的变化入手,讨论了景观空间异质性对生态系统服务形成与供给的影响及其强度,并认为景观组成异质性变化能够直接影响生态系统服务,而景观构型异质性变化会通过改变生态过程而间接影响生态系统服务;阐述了景观空间异质性在影响生态系统服务形成与供给的同时,也使生态系统服务在空间上产生了异质性分布,并从自然因素和人为因素两个方面对其进行解释;强调了尺度问题在景观空间异质性与生态系统服务研究中的重要性;最后,明确了对生态系统服务形成与供给的景观空间异质性影响研究不仅有助于生态系统服务的维持与调节,也能更深层次地揭示其中的生态学意义。 相似文献
8.
应用空间直观景观模型(LANDIS),研究有采伐和无采伐预案下大兴安岭呼中林区的森林景观的长期变化。用APACK计算每一个物种及各年龄级的分布面积。为了研究物种分布格局的变化,计算了物种分布的聚集度指数。研究结果如下:(1)在无采伐预案下。火干扰模式为低频率大面积高强度火烧;在有采伐预下,火干扰模式为高频率小面积低强度火烧;(2)在无采伐预案下,火会造成各种群分布面积的强烈波动,但是对种群的年龄结构没有很大影响;在有采伐预案下,火对种群分布面积和年龄结构都没有很大的影响;(3)采伐能完全改变各种群的年龄结构。降低种群分布的聚集度,但是对各种群的分布面积并没有很大影响;(4)在有采伐预案下,各种群为增长型种群,增长量通过采伐取走,群落处于演替的干扰顶极状态;在无采伐预案下,各种群为稳定型种群(樟子松和偃松除外),大面积高强度火烧使群落产生较大的波动。结果表明,在呼中林业局,在没有人为干扰情况下,火干扰是森林景观变化的主导因素。自从有了人为干扰,采伐开始逐渐取代火干扰成为影响森林景观变化的主导因素。空间直观景观模型的一个挑战是模型的验证。由于缺乏详细的空间数据及模型模拟中的随机性,很难通过模型模拟结果与实地调查或遥感数据的比较进行验证。通过对火模拟、物种分布和物种组成的生态或生物学实现对模型进行验证。 相似文献
9.
气候变暖存在明显的昼夜不对称性,夜间气温升高幅度显著高于白天.本研究采用夜间被动式增温系统,于2009-2010年在我国冬小麦主产区(石家庄、徐州、许昌和镇江)进行全生育期田间增温试验,研究了土壤pH值、速效养分和抽穗期冬小麦根系对夜间增温的响应.结果表明: 与不增温对照相比,夜间增温显著降低了土壤pH值和速效养分含量,并在一定程度上提高了根系干质量和根冠比.冬小麦整个生育期,夜间增温分别使石家庄、徐州、许昌和镇江试验点土壤pH值平均降低0.4%、0.4%、0.7%和0.9%,碱解氮含量平均降低8.1%、8.1%、7.1%和6.0%,速效磷含量平均降低15.7%、12.1%、19.6%和25.8%;速效钾含量平均降低11.5%、7.6%、7.6%和10.1%.增温处理下,石家庄、徐州和镇江试验点抽穗期冬小麦根系干质量分别平均增加31.5%、27.0%和14.5%;石家庄、许昌和镇江试验点抽穗期冬小麦根冠比分别平均提高23.8%、13.7%和9.7%.夜间增温可能通过改变土壤化学特性影响土壤养分供应和冬小麦生长 相似文献
10.
夜间增温对冬小麦根系生长和土壤养分有效性的影响 总被引:4,自引:0,他引:4
气候变暖存在明显的昼夜不对称性,夜间气温升高幅度显著高于白天.本研究采用夜间被动式增温系统,于2009-2010年在我国冬小麦主产区(石家庄、徐州、许昌和镇江)进行全生育期田间增温试验,研究了土壤pH值、速效养分和抽穗期冬小麦根系对夜间增温的响应.结果表明: 与不增温对照相比,夜间增温显著降低了土壤pH值和速效养分含量,并在一定程度上提高了根系干质量和根冠比.冬小麦整个生育期,夜间增温分别使石家庄、徐州、许昌和镇江试验点土壤pH值平均降低0.4%、0.4%、0.7%和0.9%,碱解氮含量平均降低8.1%、8.1%、7.1%和6.0%,速效磷含量平均降低15.7%、12.1%、19.6%和25.8%;速效钾含量平均降低11.5%、7.6%、7.6%和10.1%.增温处理下,石家庄、徐州和镇江试验点抽穗期冬小麦根系干质量分别平均增加31.5%、27.0%和14.5%;石家庄、许昌和镇江试验点抽穗期冬小麦根冠比分别平均提高23.8%、13.7%和9.7%.夜间增温可能通过改变土壤化学特性影响土壤养分供应和冬小麦生长 相似文献
11.
华南地区1961—2008年夏季极端降水频次的时空变化 总被引:3,自引:0,他引:3
根据华南地区110个气象站1961—2008年逐日降水资料,以百分位方法定义极端降水事件的阈值,采用旋转经验正交函数、趋势系数计算、线性倾向计算、M-K检测、方差分析等方法,对华南地区夏季极端降水频次的时空变化特征进行了研究。结果表明:整体上,华南地区极端降水频次呈显著的阶段性变化特征,20世纪70年代末—90年代初偏少,90年代中期至今偏多;从区域变化特征上可以分为6个主要空间区域,对各空间区域代表站的资料分析发现,桂东北区、桂东南到粤西区和海南南部夏季极端降水频次呈显著上升趋势,粤东区、桂西区和雷州区呈显著的阶段性变化特征,3个区域的共同特点是80年代偏少,90年代和21世纪初偏多;6个主要空间区域夏季极端降水频次周期变化特征显著,长周期是23a、21a,次之是17a、16a和12a,短周期是5a、4a,6个空间区域中的5个都在90年代发生了显著增多的突变现象。 相似文献
12.
Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities 总被引:9,自引:0,他引:9
Wind is known to affect the spatial heterogeneity of soil resources in arid and semiarid systems, but multi-year, quantified
observations are largely absent. We studied the effects of wind erosion on the spatial distribution of soil organic carbon
(SOC) and other soil nutrients at the Jornada Experimental Range, in southern New Mexico. Enhanced wind erosion was encouraged
by grass cover reduction in a Sporobolus-mesquite dominated site (SM) and a Bouteloua-mesquite dominated site (BM). The scale and magnitude of spatial dependence for the soil analytes were quantified using geostatistical
analyses. Results of this study show that soil organic matter related analytes such as SOC, TN, Navail, and SO4
2- are among the first to be eroded and redistributed; cations such as Ca2+ and Mg2+ may not be removed and redistributed significantly; and other ions such as K+, Na+ and Cl− showed no discernible pattern of change. Geostatistics show that wind appeared to increase the scale of spatial autocorrelation,
but decrease the scale of spatial dependence of most soil analytes over 2–3 windy seasons. In the wind enhanced plot of the
SM site, up to 99% of the spatial dependence of SOC was autocorrelated at the distance of 1.45 m before the initiation of
wind erosion, but the spatial dependence dropped significantly to only 60% at a larger autocorrelation distance of 2.76 m
after three windy seasons. Similar but less significant changes were observed for SOC in the BM site. Despite the differential
effects of wind on the soil analytes, we conclude that the overall results of wind on the grass cover reduction plots are
the disappearance of small, strong fertile islands, which may be related to grasses; and the reinforcement of large fertile
islands, which are likely related to mesquite shrubs. In addition, the change of the spatial patterns of SOC and other soil
nutrients induced by enhanced wind erosion may persist and reinforce soil islands associated with shrubs, thus allowing a
positive feedback for further desertification in this arid grassland. 相似文献
13.
To test the ability of plants to integrate small-scale imbalances in soil nitrate and phosphate patches, plant growth and acquisition of nitrate and phosphate were measured for the perennial grass Agropyron desertorum (Fisch. ex Link) Schult. and the shrub Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle in soil where the principal supply of nitrate and phosphate came from two enriched patches. The soil was calcareous loamy-skeletal Typic Haploxerolls. These patches were applied in two treatments: either nitrate and phosphate were applied in both patches (balanced treatment) or one patch contained only nitrate and the other only phosphate (unbalanced treatment). The same total quantity of nutrients was applied in both treatments and these included 15 N and 32 P tracers. The plants were in large pots in open field conditions. There were no significant differences in total biomass production and nitrogen concentration between the two treatments, indicating that both species had the physiological ability to integrate soil nutrient resources. Artemisia was able to acquire more phosphate in the unbalanced treatment, probably due to the high local solution phosphate concentration. Generally Artemisia acquired more N and P than did Agropyron . 相似文献
14.
Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China 总被引:5,自引:0,他引:5
Growth and vertical distribution of fine root closely depend on soil resource availability. Better understanding of relationships
of root profile with vertical distribution of available soil resource and soil characteristics can allow ecologists to predict
the fine root distribution on the scales ranging from individual plants to vegetation communities. The objective of the study
was to understand the fine root mass density (FRMD), fine root length density (FRLD), fine root area density (FRAD), mean
root diameter and specific root length (SRL), vertical distribution in soil profile and their relation with soil environment
factors in semiarid and arid Loess Plateau of China. The vertical fine root distribution and soil bulk density, soil moisture
and soil inorganic N in 0-60 cm soil profile (0–15, 15–30, 30–45 and 45–60 cm intervals) were investigated by soil coring
methods in three Pinus tabulaeformis Carr. forests chosen at three locations. The fine root density parameters (FRMD, FRLD and FRAD) and SRL peaked in the most
upper soil layer (0–15 cm interval) and decreased with increased soil depth. The results provided a strong support that soil
water rather than soil inorganic N is a key control on fine root distribution in the Loess Plateau. With increased soil moisture,
the root mass, length and SRL increased and the mean root diameter decreased. The effects of soil bulk density on the fine
root parameters were consistent with those of the soil water. An unexpected result was obtained about the relationships between
soil organic N and the root distributions and occurrences because of no differences among the soil depth intervals in soil
inorganic N content. It might be associated with severe soil water deficit limiting soil nitrogen utilization efficiency in
arid Loess Plateau. 相似文献
15.
Summary Seasonal variations in the spatial distribution of root tips were studied in 19 and 29 year old teak plantations, located on red and alluvial soils respectively. The pattern was essentially similar at both sites, but generally the alluvial soil site exhibited a greater number of root tips. Root tips decreased with increasing distance from the tree base. Through-out most of the year the relative distribution of root tips decreased with depth; the difference between 0–10 and 10–20 cm depths was marginal, but 20–40 cm depth contained distinctly fewer root tips. At all distances a similar seasonal trend was noticed, a mid rainy season peak being followed by a steady decline until the dry summer except for an abrupt rise to a smaller peak in February after the winter rains.The root tip density was positively correlated with the 2 mm root biomass and both showed a similar bimodal annual cycle. Of three environmental variables studied, soil moisture and rainfall were significantly positively correlated with root tip densityl the relationship between soil temperature and root tip density was negative and non-significant. The combined effect of soil moisture and temperature on root tip density, evaluated by a multiple regression model, accounted for 80–95% of the variation in root tip density. 相似文献
16.
The role of secondary vegetation in restoring soil fertility during shifting cultivation in the tropics is well known. Yet
the effect of secondary succession on the spatial patterns of soil properties has received little attention. To determine
whether changes in the plant community as a result of shifting cultivation affect the scale of spatial dependence for biologically
important soil nutrients, we sampled three dry tropical forest stands in Campeche, Mexico. These stands represented a gradient
of cultivation history: one mature forest stand, a forest fallow that had undergone one cultivation-fallow cycle, and a forest
fallow that had undergone two cultivation-fallow cycles. We used an analysis of semivariance to quantify the scale and magnitude
of spatial dependence for organic matter content (OM), phosphorus (P), potassium (K), and aluminum (Al) in each stand. The
scale of spatial dependence varied with cultivation history, but the degree of spatial dependence did not differ among stands.
In the mature forest P and K were autocorrelated over distances >7.5 m. In the forest fallows 48–88% of the variation in soil
P and K was autocorrelated over distances up to 1.1–5.1 m. In contrast, the range of autocorrelation for Al (∼2.5 m) did not
differ among stands. We conclude that shifting cultivation changes the range of autocorrelation for biologically important
soil nutrients at a scale that may influence plant growth. The finer scaled pattern of soil nutrients in forest fallows is
likely to persist with continued shifting cultivation, since fallows are cleared every 3–15 years. 相似文献
17.
Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa 总被引:2,自引:0,他引:2
We studied the degree and scale of patchiness of vegetation and selected soil variables along a gradient of herbivore impact. The gradient consisted of a radial pattern of `high', `intermediate' and `low' herbivore impact around a watering point in a semi-arid environment in Burkina Faso (West Africa). We hypothesised that, at a certain range of herbivore impact, vegetated patches alternating with patches of bare soil would occur as a consequence of plant-soil feedbacks and run-off-run-on patterns. Indeed, our transect data collected along the gradient showed that vegetated patches with a scale of about 5–10 m, alternating with bare soil, occurred at intermediate herbivore impact. When analysing the data from the experimental sites along the gradient, however, we also found a high degree of patchiness of vegetation and soil variables in case of low and high herbivore impact. For low herbivore impact, most variation was spatially explained, up to 100% for vegetation biomass and soil temperature, with a patch scale of about 0.50 m. This was due to the presence of perennial grass tufts of Cymbopogon schoenanthus. Patterns of soil organic matter and NH4-N were highly correlated with these patterns of biomass and soil temperature, up to r=0.7 (P<0.05) for the in situ correlation between biomass and NH4-N. For high herbivore impact, we also found that most variation was spatially explained, up to 100% for biomass and soil temperature, and 84% for soil moisture, with three distinct scales of patchiness (about 0.50 m, 1.80 m and 2.80 m). Here, microrelief had a corresponding patchy structure. For intermediate herbivore impact, again most variation was spatially explained, up to 100% for biomass and soil temperature, and 84% for soil moisture, with a patch scale of about 0.95 m. Here, we found evidence that vegetated patches positively affected soil moisture through less run-off and higher infiltration of rainwater that could not infiltrate into the bare soil elsewhere, which was not due to microrelief. Thus, we conclude that our findings are in line with our initial hypothesis that, at intermediate herbivore impact, vegetated patches alternating with patches of bare soil persist in time due to positive plant-soil feedbacks. 相似文献
18.
Fluctuations of the soil environment and fine root growth in a young Sitka spruce plantation 总被引:5,自引:0,他引:5
J. D. Deans 《Plant and Soil》1979,52(2):195-208
Summary From soil cores extracted at 5 day intervals from 3 May to 6 August it was found that the biomass of fine roots in a Sitka spruce plantation, 14 years old, fluctuated with maxima in late May and mid July. The earlier peak coincides with increasing soil temperatures during a period of high incident precipitation and the latter developed when the soil profile was rewetted. Fine root biomass and soil moisture tension (SMT) were significantly and negatively correlated in three of four soil horizons. Root mortality occurred whenever incident precipitation failed to maintain soil moisture tension near zero. In the very open pored horizons the critical SMT for root death was unexpected small, <0.1 bars; in the peat horizons it wasc 0.2 bars. 相似文献
19.
基于GIS和地统计学的土壤养分空间变异特征研究--以河北省遵化市为例 总被引:61,自引:0,他引:61
基于地理信息系统 (GIS)和地统计学研究了河北省遵化市土壤表层 ( 0~ 2 0cm )碱解氮、全氮、速效钾、速效磷和有机质等 5种养分要素的空间变异规律 .应用GIS能够将系统变量的属性数据同地理数据相结合 ,使大区域范围内进行地统计学分析变得较为方便 .研究表明 ,全氮、碱解氮、速效磷、有机质变异函数曲线的理论模型符合球状模型 ,速效钾的理论模型表现为指数模型和有基台值的线性模型的套合结构 ;碱解氮、全氮、速效磷、有机质的空间变异主要是由随机性因素引起的 ,但程度有所差异 ,全氮和有机质由随机性因素引起的空间异质性程度较高 ,碱解氮和速效磷较低 ;速效钾的空间变异则主要是由结构性因素引起 ;5种养分要素的空间自相关程度都属于中等的空间自相关 ,但空间变异的尺度范围不同 ,碱解氮和速效磷变异尺度基本相近 ,为 5和5 .5km ;全氮较大 ,为 14 .5km ;有机质为 8.5km ;速效钾的变异尺度有两个 ,0~ 3 .5km主要以指数模型为主 ,3 .5~ 2 5 .5km范围内以有基台值的线性模型为主 .5种养分要素的各向同性的范围不同 ,碱解氮和速效磷在整个范围 ( 0~ 2 8km )都表现出各向同性 ,全氮和有机质的其次 ,为 0~ 10km ;速效钾的较小 ,为 0~ 8km . 相似文献
20.
Question: Invasion of woody species into grasslands is a global phenomenon. This is also topical in semi‐natural temperate grasslands that are no longer profitable for agricultural management. Trees and grasses interact through harsh root competition, but below‐ground processes have been neglected in the dynamics of semi‐natural grasslands. Trees are thought to have a competitive advantage in resource‐rich and heterogeneous soils. We tested whether soil resource quantity and heterogeneity differ between paired temperate semi‐natural grasslands and forests (former grasslands), and whether this was caused abiotically by varying soil depth or biotically by fine roots. Location: Thin‐soil calcareous alvar grasslands with overgrown parts (young Pinus sylvestris forests) in W. Estonia. Methods: The quantity and spatial heterogeneity of soil resources (moisture and nutrients), soil depth, and root parameters (mass, length and specific length) were measured in 1‐m transects of 11 samples in 26 paired grasslands and forests. The quantity and heterogeneity of soil resources were compared between vegetation types and related to soil depth and root parameters. Results: Soil resources were lower and more heterogeneous in forests than in grasslands. The invasion of woody species was enhanced abiotically by deeper soil. Root mass was larger in the forests, but root length was longer in the grasslands. Both root mass and specific root length were more heterogeneous in the forests. Forest root length was negatively correlated with transient soil moisture patches and positively correlated with more persistent nutrient‐rich patches. No such relationship was found in grasslands. Conclusions: Abiotic soil heterogeneity (local deep‐soil patches) supports woody species invasion, but the trees themselves also biotically make soils more heterogeneous, which further enhances woody species invasion. Large trees use soil resources patchily, making soils biotically poorer and more heterogeneous in resources. The dynamics of temperate semi‐natural grasslands are strongly linked to below‐ground ecological processes, and high soil heterogeneity can be both the cause and the outcome of woody species invasion. 相似文献