首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Phosphatidylinositol (PtdIns) 4-kinases catalyze the conversion of PtdIns to PtdIns 4-phosphate, the major precursor of phosphoinositides that regulates a vast array of cellular processes. Based on enzymatic differences, two classes of PtdIns 4-kinase have been distinguished termed Types II and III. Type III kinases, which belong to the phosphatidylinositol (PI) 3/4-kinase family, have been extensively characterized. In contrast, little is known about the Type II enzymes (PI4KIIs), which have been cloned and sequenced very recently. PI4KIIs bear essentially no sequence similarity to other protein or lipid kinases; hence, they represent a novel and distinct branch of the kinase superfamily. Here we define the minimal catalytic domain of a rat PI4KII isoform, PI4KIIalpha, and identify conserved amino acid residues required for catalysis. We further show that the catalytic domain by itself determines targeting of the kinase to membrane rafts. To verify that the PI4KII family extends beyond mammalian sources, we expressed and characterized Drosophila PI4KII and its catalytic domain. Depletion of PI4KII from Drosophila cells resulted in a severe reduction of PtdIns 4-kinase activity, suggesting the in vivo importance of this enzyme.  相似文献   

2.
We previously found that pathophysiological concentrations (< or = 10 nm) of an amyloid beta protein (Abeta25-35) reduced the plasma membrane phosphatidylinositol monophosphate level in cultured rat hippocampal neurons with a decrease in phosphatidylinositol 4-monophosphate-dependent Cl- -ATPase activity. As this suggested an inhibitory effect of Abeta25-35 on plasma membrane phosphatidylinositol 4-kinase (PI4K) activity, in vitro effects of Abetas on PI4K activity was examined using rat brain subcellular fractions and recombinant human type II PI4K (PI4KII). Abeta25-35 (10 nm) inhibited PI4KII activity, but neither PI 3-kinase (PI3K) nor type III PI4K (PI4KIII) activity, in microsomal fractions, while 100 nm Abeta25-35 inhibited PI3K activity in mitochondrial fractions. In plasma membrane-rich fractions, Abetas (> 0.5 nm) dose-dependently inhibited PI4KII activity, the maximal inhibition to 77-87% of control being reached around 10 nm of Abetas without significant changes in apparent Km values for ATP and PI, suggesting non-competitive inhibition by Abetas. The inhibition by 10 nm Abeta25-35 was reversible. In recombinant human PI4KIIalpha, inhibition profiles of Abetas were similar to those in rat brain plasma membranes. Therefore, pathophysiological concentrations of Abetas directly and reversibly inhibited plasma membrane PI4KII activity, suggesting that plasma membrane PI4KII is a target of Abetas in the pathogenesis of Alzheimer's disease.  相似文献   

3.

Geminiviruses are the largest and most devastating group of plant viruses which contain ssDNA as a genetic material. Geminivirus-derived virus-induced gene silencing (VIGS) vectors have emerged as an efficient and simple tool to study functional genomics in various plants. However, previously developed VIGS vectors have certain limitations, owing to their inability to be used in tissue-specific functional study. In the present study, we developed a Chilli leaf curl virus (ChiLCV)-based VIGS vector for its tissue-specific utilization by replacing the coat protein gene (open reading frame (ORF) AV1) with the gene of interest for phytoene desaturase (PDS) of Nicotiana benthamiana. Functional validation of ChiLCV-based VIGS in N. benthamiana resulted in systemic silencing of PDS exclusively in the phloem region of inoculated plants. Furthermore, expression of enhanced green fluorescence protein (EGFP) using the same ChiLCV vector was verified in the phloem region of the inoculated plants. Our results also suggested that, during the early phase of infection, ChiLCV was associated with the phloem region, but at later stage of pathogenesis, it can spread into the adjoining non-vascular tissues. Taken together, the newly developed ChiLCV-based vector provides an efficient and versatile tool, which can be exploited to unveil the unknown functions of several phloem-specific genes.

  相似文献   

4.

Background

Beet severe curly top virus (BSCTV) is a leafhopper transmitted geminivirus with a monopartite genome. C4 proteins encoded by geminivirus play an important role in virus/plant interaction.

Methods and Findings

To understand the function of C4 encoded by BSCTV, two BSCTV mutants were constructed by introducing termination codons in ORF C4 without affecting the amino acids encoded by overlapping ORF Rep. BSCTV mutants containing disrupted ORF C4 retained the ability to replicate in Arabidopsis protoplasts and in the agro-inoculated leaf discs of N. benthamiana, suggesting C4 is not required for virus DNA replication. However, both mutants did not accumulate viral DNA in newly emerged leaves of inoculated N. benthamiana and Arabidopsis, and the inoculated plants were asymptomatic. We also showed that C4 expression in plant could help C4 deficient BSCTV mutants to move systemically. C4 was localized in the cytosol and the nucleus in both Arabidopsis protoplasts and N. benthamiana leaves and the protein appeared to bind viral DNA and ds/ssDNA nonspecifically, displaying novel DNA binding properties.

Conclusions

Our results suggest that C4 protein in BSCTV is involved in symptom production and may facilitate virus movement instead of virus replication.  相似文献   

5.
Geminivirus disease complexes potentially interfere with plants physiology and cause disastrous effects on a wide range of economically important crops throughout the world. Diverse geminivirus betasatellite associations exacerbate the epidemic threat for global food security. Our previous study showed that βC1, the pathogenicity determinant of geminivirus betasatellites induce symptom development by disrupting the ultrastructure and function of chloroplasts. Here we explored the betasatellite-virus-chloroplast interaction in the scope of viral pathogenesis as well as plant defence responses, using Nicotiana benthamiana—Radish leaf curl betasatellite (RaLCB) as the model system. We have shown an interaction between RaLCB-encoded βC1 and one of the extrinsic subunit proteins of oxygen-evolving complex of photosystem II both in vitro and in vivo. Further, we demonstrate a novel function of the Nicotiana benthamiana oxygen-evolving enhancer protein 2 (PsbP), in that it binds DNA, including geminivirus DNA. Transient silencing of PsbP in N. benthamiana plants enhances pathogenicity and viral DNA accumulation. Overexpression of PsbP impedes disease development during the early phase of infection, suggesting that PsbP is involved in generation of defence response during geminivirus infection. In addition, βC1-PsbP interaction hampers non-specific binding of PsbP to the geminivirus DNA. Our findings suggest that betasatellite-encoded βC1 protein accomplishes counter-defence by physical interaction with PsbP reducing the ability of PsbP to bind geminivirus DNA to establish infection.  相似文献   

6.
Mammalian cells express two isoforms of type II phosphatidylinositol 4-kinase: PI4KIIα and PI4KIIβ. PI4KIIα exists almost exclusively as a constitutively active integral membrane protein because of its palmitoylation (Barylko, B., Gerber, S. H., Binns, D. D., Grichine, N., Khvotchev, M., Südhof, T. C., and Albanesi, J. P. (2001) J. Biol. Chem. 276, 7705-7708). In contrast, PI4KIIβ is distributed almost evenly between membranes and cytosol. Whereas the palmitoylated membrane-bound pool is catalytically active, the cytosolic kinase is inactive (Wei, Y. J., Sun, H. Q., Yamamoto, M., Wlodarski, P., Kunii, K., Martinez, M., Barylko, B., Albanesi, J. P., and Yin, H. L. (2002) J. Biol. Chem. 277, 46586-46593; Jung, G., Wang, J., Wlodarski, P., Barylko, B., Binns, D. D., Shu, H., Yin, H. L., and Albanesi, J. P. (2008) Biochem. J. 409, 501-509). In this study, we identify the molecular chaperone Hsp90 as a binding partner of PI4KIIβ, but not of PI4KIIα. Geldanamycin (GA), a specific Hsp90 inhibitor, disrupts the Hsp90-PI4KIIβ interaction and destabilizes PI4KIIβ, reducing its half-life by 40% and increasing its susceptibility to ubiquitylation and proteasomal degradation. Cytosolic PI4KIIβ is much more sensitive to GA treatment than is the integrally membrane-associated species. Exposure to GA induces a partial redistribution of PI4KIIβ from the cytosol to membranes and, with brief GA treatments, a corresponding increase in cellular phosphatidylinositol 4-kinase activity. Stimuli such as PDGF receptor activation that also induce recruitment of the kinase to membranes disrupt the Hsp90-PI4KIIβ interaction to a similar extent as GA treatment. These results support a model wherein Hsp90 interacts predominantly with the cytosolic, inactive pool of PI4KIIβ, shielding it from proteolytic degradation but also sequestering it to the cytosol until an extracellular stimulus triggers its translocation to the Golgi or plasma membrane and subsequent activation.  相似文献   

7.
8.
The compartmentalization of cAMP by specifically targeted phosphodiesterases (PDEs) contributes to signal regulation in defined regions of cells. We previously demonstrated that the 20 N-terminal amino acids of Aplysia PDE4 (ApPDE4) long-form (L(N20)) and the two mutants of L(N20) were localized to the Golgi complex. However, the molecular mechanisms underlying the Golgi complex targeting of ApPDE4 long-form and its mutated forms are not clear. In the present study, we show that the Golgi complex targeting of L(N20/C14,15S)-enhanced green fluorescent protein (EGFP) was antimycin A-, phenylarsine oxide (PAO)-, and adenosine-sensitive, but insensitive to high concentrations of wortmannin. On the other hand, the Golgi complex targeting of L(N20)-EGFP and L(N20/C3,14S)-EGFP was antimycin A- and PAO-insensitive. These results suggest that the Golgi-localized lipid kinase protein, phosphatidylinositol 4-kinase type II alpha (PI4KIIα), the activity of which is inhibited by PAO and adenosine, but not by high concentrations of wortmannin, is likely involved in the Golgi complex targeting of L(N20/C14,15S)-EGFP. In addition, subcellular localization of L(N20/C14,15S)-EGFP, but not L(N20)-EGFP or L(N20/C3,14S)-EGFP, was changed from the Golgi complex only to both the endoplasmic reticulum (ER) and the Golgi complex following treatment with a palmitoylation inhibitor, 2-bromo palmitate. Taken together, our results suggest that L(N20/C14,15S)-EGFP, but not L(N20)-EGFP or L(N20/C3,14S)-EGFP, is localized to the Golgi complex in a PI4KII activity- and palmitoylation-dependent manner. Therefore, phosphatidylinositol 4-phosphate (PI4P) generated by PI4KIIα at the Golgi complex might play a key role in the Golgi complex targeting of L(N20/C14,15S)-EGFP.  相似文献   

9.
Protein kinase B (PKB) is a member of the second-messenger regulated subfamily of protein kinases implicated in signalling downstream of growth factor and insulin receptor tyrosine kinases and phosphatidylinositol 3-kinase (PI 3-kinase). PKB is activated by phosphorylation in response to mitogens and survival factors. Membrane recruitment driven by lipid second-messengers derived from PI 3-kinase leads to PKB phosphorylation and activation by upstream kinases (PDK1 and an as yet identified protein kinase). Prolonged stimulation with growth factors results in nuclear translocation, providing evidence that PKB activation at the plasma membrane precedes its nuclear translocation and supporting a role for PKB in signalling from receptor tyrosine kinases to the nucleus.  相似文献   

10.
Membrane preparations of Coffea arabica suspension cells were incubated in the presence of 〚32P〛γ-ATP. After lipid extraction and separation by thin layer chromatography, the following phosphorylated lipids were detected: phosphatidylinositol 4,5 bis-phosphate (PtdIns4,5P2), lyso-phosphatidylinositol 4-phosphate (LPtdIns4P), phosphatidylinositol 4-phosphate (PtdIns4P), diacylglycerol pyrophosphate (DGPP), lyso-phosphatidic acid (LPA) and phosphatidic acid (PA). This suggests the presence of phosphatidylinositol (EC 2.7.1.67), phosphatidylinositol 4 phosphate (EC 2.7.1.68), diacylglycerol (EC 2.7.1.107) and monoacylglycerol (EC 2.1.1.94) kinases. The activities of these lipid kinases changed during the culture period of the Carabica cells reaching peak at day 7 of culture; however, enzymatic activities were very low before and after day 7. The behavior of these lipid kinases in the presence of their respective substrates and exogenous substrates such as ATP was characterized. The apparent Km values for ATP of all the lipid kinase activities were lower than 30 μM. All kinase activities assayed were totally dependent on the presence of Mg2+ and were unable to use Mn2+ or Ca2+ which produced a strong inhibition of all the lipid kinase activities. By using polyclonal antibodies against PtdIns 4-kinase and PtdInsP 5-kinase, we were able to identify at least two putative isoforms for the PtdIns 4-kinase and one for the PtdInsP 5-kinase. In both cases, the correlation of the amount of these proteins with their respective kinase activities depended on the culture cycle. The present work describes for the first time the characterization of the lipid kinases of Carabica suspension cells, and the correlation of these activities with the culture cycle.  相似文献   

11.
Type II phosphatidylinositol 4-kinase (PI4KII) produces the lipid phosphatidylinositol 4-phosphate (PI4P), a key regulator of membrane trafficking. Here, we generated genetic models of the sole Drosophila melanogaster PI4KII gene. A specific requirement for PI4KII emerged in larval salivary glands. In PI4KII mutants, mucin-containing glue granules failed to reach normal size, with glue protein aberrantly accumulating in enlarged Rab7-positive late endosomes. Presence of PI4KII at the Golgi and on dynamic tubular endosomes indicated two distinct foci for its function. First, consistent with the established role of PI4P in the Golgi, PI4KII is required for sorting of glue granule cargo and the granule-associated SNARE Snap24. Second, PI4KII also has an unforeseen function in late endosomes, where it is required for normal retromer dynamics and for formation of tubular endosomes that are likely to be involved in retrieving Snap24 and Lysosomal enzyme receptor protein (Lerp) from late endosomes to the trans-Golgi network. Our genetic analysis of PI4KII in flies thus reveals a novel role for PI4KII in regulating the fidelity of granule protein trafficking in secretory tissues.  相似文献   

12.
Phosphatidylinositol 4-kinase IIα (PI4KIIα) is predominantly Golgi-localized, and it generates >50% of the phosphatidylinositol 4-phosphate in the Golgi. The lipid kinase activity, Golgi localization, and "integral" membrane binding of PI4KIIα and its association with low buoyant density "raft" domains are critically dependent on palmitoylation of its cysteine-rich (173)CCPCC(177) motif and are also highly cholesterol-dependent. Here, we identified the palmitoyl acyltransferases (Asp-His-His-Cys (DHHC) PATs) that palmitoylate PI4KIIα and show for the first time that palmitoylation is cholesterol-dependent. DHHC3 and DHHC7 PATs, which robustly palmitoylated PI4KIIα and were colocalized with PI4KIIα in the trans-Golgi network (TGN), were characterized in detail. Overexpression of DHHC3 or DHHC7 increased PI4KIIα palmitoylation by >3-fold, whereas overexpression of the dominant-negative PATs or PAT silencing by RNA interference decreased PI4KIIα palmitoylation, "integral" membrane association, and Golgi localization. Wild-type and dominant-negative DHHC3 and DHHC7 co-immunoprecipitated with PI4KIIα, whereas non-candidate DHHC18 and DHHC23 did not. The PI4KIIα (173)CCPCC(177) palmitoylation motif is required for interaction because the palmitoylation-defective SSPSS mutant did not co-immunoprecipitate with DHHC3. Cholesterol depletion and repletion with methyl-β-cyclodextrin reversibly altered PI4KIIα association with these DHHCs as well as PI4KIIα localization at the TGN and "integral" membrane association. Significantly, the Golgi phosphatidylinositol 4-phosphate level was altered in parallel with changes in PI4KIIα behavior. Our study uncovered a novel mechanism for the preferential recruitment and activation of PI4KIIα to the TGN by interaction with Golgi- and raft-localized DHHCs in a cholesterol-dependent manner.  相似文献   

13.
Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical fórces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolárity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels0 and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.  相似文献   

14.
Two types of phosphatidylinositol (PI) 3-kinase (PI3K) have been purified 6250-fold (PI3KI) and 1250-fold (PI3KII) from the cytosol fraction of bovine thymus. Purified PI3KI and PI3KII were found to have apparent molecular masses of 110 and 190 kDa, respectively, by gel filtration. On the other hand, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the molecular mass of PI3KI was again estimated as 110 kDa, PI3KII showed two bands with apparent molecular masses of 110 and 85 kDa, suggesting a heterodimer form. Peptide mapping analysis demonstrated that the 110-kDa protein in PI3KII was the same protein as PI3KI. The specific activity of PI3KI was calculated as 250 nmol/min/mg of protein, while that of PI3KII was 50 nmol/min/mg of protein. The product of PI phosphorylation by PI3KI and PI3KII were confirmed as phosphatidylinositol 3-phosphate by PartiSphere Sax column chromatography. The results show that there are two types of PI 3-kinase in bovine thymus. One exists as a monomer and the other as a heterodimer form. Furthermore, the biochemical properties of these two PI 3-kinases are markedly different. These two types of PI 3-kinase may be regulated differently under physiological conditions.  相似文献   

15.
Lin CY  Tsai WS  Ku HM  Jan FJ 《Transgenic research》2012,21(2):231-241
Tomato-infecting begomoviruses, a member of whitefly-transmitted geminivirus, cause the most devastating virus disease complex of cultivated tomato crops in the tropical and subtropical regions. Numerous strategies have been used to engineer crops for their resistance to geminiviruses. However, nearly all have concentrated on engineering the replication-associated gene (Rep), but not on a comprehensive evaluation of the entire virus genome. In this study, Tomato leaf curl Taiwan virus (ToLCTWV), a predominant tomato-infecting begomovirus in Taiwan, was subjected to the investigation of the viral gene fragments conferring resistance to geminiviruses in transgenic plants. Ten transgenic constructs covering the entire ToLCTWV genome were fused to a silencer DNA, the middle half of N gene of Tomato spot wilt virus (TSWV), to induce gene silencing and these constructs were transformed into Nicotiana benthamiana plants. Two constructs derived from IRC1 (intergenic region flanked with 5′ end Rep) and C2 (partial C2 ORF) were able to render resistance to ToLCTWV in transgenic N. benthamiana plants. Transgenic plants transformed with two other constructs, C2C3 (overlapping region of C2 and C3 ORFs) and Rep2 (3′ end of the C1 ORF), significantly delayed the symptom development. Detection of siRNA confirmed that the mechanism of resistance was via gene silencing. This study demonstrated for the first time the screening of the entire genome of a monopartite begomovirus to discover viral DNA fragments that might be suitable for conferring virus resistance, and which could be potential candidates for developing transgenic plants with durable and broad-spectrum resistance to a DNA virus via a gene silencing approach.  相似文献   

16.
17.
The function of muscarinic acetylcholine receptors expressed in oligodendrocytes and in myelin has remained largely undetermined. Here we present evidence that incubation of oligodendrocyte progenitors, deprived of growth factor, with the acetylcholine analog carbachol significantly reduced cell death by apoptosis and blocked caspase-3 cleavage. This protective effect was reversed by atropine, a muscarinic acetylcholine receptor antagonist, as well as by specific inhibitors of intracellular signaling molecules, including phosphatidylinositol 3-kinase (Wortmannin and LY294002), Akt (Akt inhibitor III) and Src-like tyrosine kinases (PP2), but not by the mitogen-activated protein kinase kinase inhibitor, PD98059. Activation of Akt by carbachol was antagonized by atropine and inhibited by LY294002 and PP2. The Src-like tyrosine kinase inhibitor, PP2, also reduced carbachol stimulation of extracellular signal-regulated kinases 1/2 and cAMP-response element binding protein in a dose-dependent manner. Furthermore, carbachol increased tyrosine-phosphorylation of Fyn, a member of the Src-like tyrosine kinases. These results indicate that muscarinic acetylcholine receptors play an important role in oligodendrocyte progenitor survival through transduction pathways involving activation of Src-like tyrosine kinases and phosphatidylinositol 3-kinase/Akt.  相似文献   

18.
An epidemic of chilli leaf curl disease was recorded in 2004 in Jodhpur, a major chilli‐growing area in Rajasthan, India. Several isolates were efficiently transmitted by the whitefly (Bemisia tabaci), all of which induced severe leaf curl symptoms in chilli. A single whitefly was capable of transmitting the virus, and eight or more whiteflies per plant resulted in 100% transmission. The minimum acquisition access period (AAP) and inoculation access period (IAP) were 180 and 60 min, respectively. The virus persisted in whiteflies for up to 5 days postacquisition. Of 25 species tested, the virus infected only five (Capsicum annuum, Carica papaya, Solanum lycopersicum, Nicotiana tabacum and N. benthamiana). The virus was identified as Chilli leaf curl virus (ChiLCV), which shared the closest sequence identity (96.1%) with an isolate of ChiLCV from potato in Pakistan and showed sequence diversity up to 12.3% among the ChiLCV isolates reported from India and Pakistan. A betasatellite was identified, which resembled most closely (97.3%) that of Tomato leaf curl Bangladesh betasatellite previously reported from chilli and tomato leaf curl in India. The betasatellite was very different from that reported from chilli leaf curl in Pakistan, indicating that different betasatellites are associated with chilli leaf curl in India and Pakistan. We describe here for the first time the virus–vector relationships and host range of ChiLCV.  相似文献   

19.
Inorganic phosphate (Pi) transport probably represents an important function of bone-forming cells in relation to extracellular matrix mineralization. In the present study, we investigated the effect of prostaglandin D2 (PGD2) on Pi transport activity and its intracellular signaling mechanism in MC3T3-E1 osteoblast-like cells. PGD2 stimulated Na-dependent Pi uptake time- and dose-dependently in MC3T3-E1 cells during their proliferative phase. A protein kinase C (PKC) inhibitor calphostin C partially suppressed the stimulatory effect of PGD2 on Pi uptake. The selective inhibitors of mitogen-activated protein (MAP) kinase pathways such as ERK, p38 and Jun kinases suppressed PGD2-induced Pi uptake. The inhibitors of phosphatidylinositol (PI) 3-kinase and S6 kinase reduced this effect of PGD2, while Akt kinase inhibitor did not. These results suggest that PGD2 stimulates Na-dependent Pi transport activity in the phase of proliferation of osteoblasts. The mechanisms responsible for this effect are activation of PKC, MAP kinases, PI 3-kinase and S6 kinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号