首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 114 毫秒
1.
Panorpa larvae possess stemmata (lateral ocelli), which have the structure of compound eyes, and stemma lamina and stemma medulla neuropils. A distinct lobula neuropil is lacking. The stemma neuropils have a columnar organization. They contain lamina monopolar cells, and both short and long visual fibers. All the identified larval monopolar neurons have radially arranged dendrites along the entire depth of the lamina neuropil and a single terminal arborization within the medulla (L1/L2-type). The terminals of visual fibers have short spiny lateral projections. Long fibers possess en passant synapses within the lamina. The same principles of organization of first and second order visual neuropils are found in Panorpa imagines. In contrast to the larvae, a lobula neuropil is present. Adults have monopolar cells of the L1-type that are similar to the L1-neurons found in Diptera. The columnar organization, the presence of short and long visual fibers, and lamina monopolar neurons are thus features common to both visual systems, viz., the larval (stemmata) and the imaginal (compound eyes).  相似文献   

2.
The compound eyes of adult stomatopod crustaceans have two to six ommatidial rows at the equator, called the midband, that are often specialized for color and polarization vision. Beneath the retina, this midband specialization is represented as enlarged optic lobe lamina cartridges and a hernia‐like expansion in the medulla. We studied how the optic lobe transforms from the larvae, which possess typical crustacean larval compound eyes without a specialized midband, through metamorphosis into the adults with the midband in a two midband‐row species Alima pacifica. Using histological staining, immunolabeling, and 3D reconstruction, we show that the last‐stage stomatopod larvae possess double‐retina eyes, in which the developing adult visual system forms adjacent to, but separate from, the larval visual system. Beneath the two retinas, the optic lobe also contains two sets of optic neuropils, comprising of a larval lamina, medulla, and lobula, as well as an adult lamina, medulla, and lobula. The larval eye and all larval optic neuropils degenerate and disappear approximately a week after metamorphosis. In stomatopods, the unique adult visual system and all optic neuropils develop alongside the larval system in the eyestalk of last‐stage larvae, where two visual systems and two independent visual processing pathways coexist. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 3–14, 2018  相似文献   

3.
In malacostracan crustaceans and insects three nested optic lobe neuropils are linked by two successive chiasmata that reverse and then reverse again horizontal rows of retinotopic columns. Entomostracan crustaceans possess but two retinotopic neuropils connected by uncrossed axons: a distal lamina and an inner plate-like neuropil, here termed the visual tectum that is contiguous with the protocerebrum. This account proposes an evolutionary trajectory that explains the origin of chiasmata from an ancestral taxon lacking chiasmata. A central argument employed is that the two optic lobe neuropils of entomostracans are homologous to the lamina and lobula plate of insects and malacostracans, all of which contain circuits for motion detection—an archaic attribute of visual systems. An ancestral duplication of a cell lineage originally providing the entomostracan lamina is proposed to have given rise to an outer and inner plexiform layer. It is suggested that a single evolutionary step resulted in the separation of these layers and, as a consequence, their developmental connection by a chiasma with the inner layer, the malacostracan-insect medulla, still retaining its uncrossed connections to the deep plate-like neuropil. It is postulated that duplication of cell lineages of the inner proliferation zone gave rise to a novel neuropil, the lobula. An explanation for the second chiasma is that it derives from uncrossed axons originally supplying the visual tectum that subsequently supply collaterals to the opposing surface of the newly evolved lobula. A cladistic analysis based on optic lobe anatomy of taxa possessing compound eyes supports a common ancestor of the entomostracans, malacostracan crustaceans, and insects.  相似文献   

4.
Adult males of the insect order Strepsiptera are characterized by an unusual visual system that may use design principles from compound as well as simple eyes. The lenses of this eye are unusually large and focus images onto extended retinae. The light-gathering ability of the lens is sufficient to resolve multiple points of an image in each optical unit. We regard each unit as an independent image-forming eye that contributes an inverted partial image. Each partial image is re-inverted by optic chiasmata between the retinae and the lamina, where the complete image could be assembled from the neighboring units. The lamina, medulla and lobula are present, but their organization into cartridges is not clearly discernable. Fluorescent fills, whole-tissue stains, and synaptotagmin immunohistochemistry show that the optic neuropils nevertheless are densely packed, and that several parallel channels within the medulla underlie each of the lenses. The size and shape of the rhabdoms, as well as a relatively slow flicker-fusion frequency could suggest that these eyes evolved through a nocturnal life stage.Abbreviations O object size - U object distance - I image size - f focal length - A lens aperture - D lens diameter - interommatidial angle - S light sensitivity of optical system  相似文献   

5.
Summary Retinula cells in the compound eye of the cricket (Gryllus bimaculatus) were recorded intracellularly and stained with Lucifer yellow. Two different methods were used to determine the spectral sensitivity of these cells: a) the spectral scanning method, and b) the conventional flash method. Three spectral types, with S()-curves close to the rhodopsin-absorption functions, were found with max at 332 nm (UV), 445 nm (blue) and 515 nm (green), respectively.Blue receptors were only recorded in the anatomically specialized dorsal rim area (DRA), and UV and green receptors in the dorsal region of the pigmented part of the eye, whereby green receptors were only found in the ventral eye. On the basis of these results, model calculations are presented for di- and trichromatic colour vision in the cricket.The fluorescence markings revealed green receptors whose axons project with short visual fibres to the lamina, and a UV receptor with a long visual fibre which projects through the lamina to the medulla. The blue receptors send their axons either to the lamina and medulla (long visual fibres) or only to the lamina (short visual fibres).The temporal dynamics of the three receptor types were examined. The blue receptors lack a phasic component of the receptor potential, and the time from stimulus on-set to peak potential is strongly increased compared to the UV and green receptors. Light adaptation reduces the latency to less than half of the dark adapted state.Spectral adaptation experiments revealed an unidirectional coupling between UV and green receptors, and it was found that polarization sensitivity (PS) in blue cells was much higher (PS= 6.5±1.5) than that of UV (PS=1.76±0.05) and green (2.26±0.57) receptors. The functional aspects of the three receptor types are discussed with respect to the presented physiological and morphological data.Abbreviations DA dorsal area - DRA dorsal rim area - PS polarization sensitivity  相似文献   

6.
视觉通路的研究在神经科学、 仿生应用和医学治疗上都具有十分重要的意义。西方蜜蜂Apis mellifera作为神经生物学研究的重要模式生物已被广泛地应用于视觉通路的研究。蜜蜂的视觉器官包括1对复眼和3只单眼, 复眼是形成视觉的主要感觉器官。视叶是蜜蜂传递和处理视觉信息的主要神经构造, 它包括视神经节层、 视髓质层、 视小叶和前视结节4个等级的神经纤维网。复杂的视觉信息在经过大脑的各级神经时被分离, 以许多空间隔离的并行连续的视觉通路传递和加工, 然后汇集到高级脑中枢, 部分甚至与其他感觉模态的信息相整合, 最终输出有效信息来调控蜜蜂的各种行为。本文按照信息在视叶中逐级传递的顺序对蜜蜂复眼的视觉通路研究进展进行综述。  相似文献   

7.
Summary An antiserum raised against gamma aminobuyric acid (GABA) was used to stain the thoracic nervous system of the locust. It stained both neuronal somata and processes within the neuropile. Among the stained somata, those of the three pairs of common inhibitory motor neurones could be identified in each of the three thoracic ganglia. In the pro- and mesothoracic ganglia five discrete groups of somata are stained, four ventral and one dorsal. In the metathoracic neuromere, an additional second dorsal group can be identified. In the abdominal neuromeres of the metathoracic ganglion both dorsal and ventral somata are stained but the latter cannot be divided into discrete populations. In each ganglion, dorsal commissures (DC) IV and V are composed of stained neurites, DCVII, the supramedian commissure, the perpendicular tract, and all the longitudinal tracts contain both stained and unstained neurites. DCI, II, III and VI, the T and I tracts are unstained. An abundance of GABA-like immunoreactive processes is found throughout the neuropile except for the anterior ventral association centre where stained processes are sparser. Some of the stained cell groups contain neurones that have been studied physiologically. The function of these neurones is discussed.Beit Memorial Fellow  相似文献   

8.
冷雪  谢璐  那杰 《昆虫知识》2009,46(5):815-818
蟋蟀视觉系统由单眼、复眼、视叶三部分组成。蟋蟀的单眼为背单眼,由角膜、角膜生成细胞、视网膜等组成,是提高昆虫复眼所感知的视觉刺激的兴奋水平部位;复眼是最主要的视觉器官,由角膜、晶锥、感杆束和网膜细胞、基膜组成,是光电转导和视觉级联反应的中心;视叶由神经节层、外髓和内髓组成,是视觉神经系统的中心。  相似文献   

9.
Variants of the Golgi-Colonnier (1964) selective silver procedure have been used to show up neurons in insect brains. Neural elements are particularly clearly impregnated in the optic lobes. Three classes of nerve cells can be distinguished; perpendicular (class I), tangential (class II) and amacrine cells (class III). There are many types of neurons in each class which together have a very wide variety of form. Their components are related to specific strata in the optic lobe regions. Short visual cells from the retina terminate in the lamina in discrete groups of endings (optic cartridges). Pairs of long visual fibres from ommatidia pass through the lamina and end in the medulla. Class I cells link these two regions in parallel with the long visual fibres and groups of these elements define columns in the medulla. These in turn give rise to small-field fibres that project to the lobula complex. Tangential processes intersect the parallel arrays of class I cells at characteristic levels. Some are complex in form and may invade up to three regions. Another type provides a direct link between the ipsi- and contralateral optic lobe. Amacrine cells are intrinsic to single lobe regions and have processes situated at the same levels as those of classes I and II cells. A fifth optic lobe region, the optic tubercle, is connected to the medulla and lobula and also receives a set of processes from the mid-brain. There are at least six separate types of small-field relays which could represent the retina mosaic arrangement in the lobula.  相似文献   

10.
Serotonin-like immunoreactivity in the optic lobes of three insect species   总被引:4,自引:0,他引:4  
The cellular localization of 5-HT in the optic lobes of three insect species was assayed with the use of antibodies raised against 5-HT. In Schistocerca, Periplaneta, and Calliphora all neuropil regions of the optic lobe, the lamina, medulla and lobula, contain 5-HT-immunoreactive varicose fibres in different patterns, like columns and layers. Such fibres also connect the lobula to neuropil in the lateral protocerebrum. In Calliphora also 5-HT-positive fibres of the medulla and lobula plate have projections to the lateral protocerebrum, whereas the origin of the lamina fibres is not certain. In all species the processes displaying 5-HT-like immunoreactivity appear to be derived from a relatively small number of cell bodies, each neuron thus having processes over a large volume of the neuropil of the optic lobe in different layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号