首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1. The major aim of this study was to test the hypothesis that nutrient enrichment and the introduction of the Nile tilapia (Oreochromis niloticus), an exotic omnivorous filter‐feeding fish, operate interdependently to regulate plankton communities and water transparency of a tropical reservoir in the semi‐arid northeastern Brazil. 2. A field experiment was performed for 5 weeks in 20 enclosures (9.8 m3) to which four treatments were randomly allocated: tilapia addition (F), nutrient addition (N), tilapia and nutrient addition (F + N) and a control treatment with no tilapia or nutrient addition (C). A two‐way repeated measures anova was undertaken to test for time, tilapia and nutrient effects and their interactions on water transparency, total phosphorus and total nitrogen concentrations, phytoplankton biovolume and zooplankton biomass. 3. Nutrient addition had no effect except on rotifer biomass, but there were significant fish effects on the biomass of total zooplankton, copepod nauplii, rotifers, cladocerans and calanoid copepods and on the biovolume of total phytoplankton, large algae (GALD ≥ 50 μm), Bacillariophyta and Zygnemaphyceae and on Secchi depth. In addition, we found significant interaction effects between tilapia and nutrients on Secchi depth and rotifers. Overall, tilapia decreased the biomass of most zooplankton taxa and large algae (diatoms) and decreased water transparency, while nutrient enrichment increased the biomass of rotifers, but only in the absence of tilapia. 4. In conclusion, the influence of fish on the reservoir plankton community and water transparency was significant and even greater than that of nutrient loading. This suggests that biomanipulation of filter‐feeding tilapias may be of importance for water quality management of eutrophic reservoirs in tropical semi‐arid regions.  相似文献   

2.
We explored the relationships between Secchi disc depth and the abundance of fish species in very shallow, hypertrophic, turbid waters of Pampa Plain lakes, Argentine. We tested whether the abundance of any of the species present was associated with water transparency for lakes where water transparency, as measured by Secchi disc depth, ranged from 0.1 to 0.4 m. Overall, the abundance of five species (Cnesterodon decemmaculatus, Jenynsia multidentata, Corydoras paleatus, Pimelodella laticeps and Odontesthes bonariensis) seemed to be affected by this narrow gradient in water transparency. These findings represent an interesting result for turbid hypertrophic environments where narrow ranges in water transparency are traditionally neglected as important factors for fishes. We show, however, how water transparency patterns may be still important for some species in highly turbid waters with extremely narrow gradients in Secchi disc depth. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
1. Visually foraging fish typically exclude large zooplankton from clear‐water lakes and reservoirs. Do fish have the same effect in turbid waters, or does turbidity provide a refuge from visual predation? 2. To test the hypothesis that fish exclude large zooplankton species from turbid sites, I searched for populations of medium or large Daphnia species in turbid, fish‐containing reservoirs of south‐central Oklahoma and north‐central Texas, U.S.A., and surveyed the literature for accounts of Daphnia species in turbid habitats worldwide. 3. Only small Daphnia species and the exuberantly spined Daphnia lumholtzi were detected in the turbid reservoirs. The Daphnia species in the reservoirs are smaller than other Daphnia species that occur in the area but were not detected. An extensive survey of the literature suggests that large Daphnia may be found in the lakes of extreme turbidity [Secchi disk depth (SD) < 0.2 m] but that only small and spiny Daphnia are likely to occur in more typical turbid locations (1.0 m > SD > 0.2 m) unless some additional factor reduces the influence of fish predation in such sites. 4. The field samples from Texas and Oklahoma together with the literature review suggest that the effect of visually foraging planktivorous fish on the size structure of turbid‐water zooplankton communities may often be as strong or even stronger than the effect of fish on clear‐water zooplankton communities.  相似文献   

4.
Empirical models based on zooplankton biomass were used to predict mean summer chlorophyll a (Chl a) and to examine how zooplankton influenced the total phosphorus (TP) - Chl a relationship. Four years of data were analyzed for three lakes having similar TP concentrations but varied abundances of Daphnia and Ceriodaphnia. Mean TP did not correlate significantly with mean Chl a during the study period, although mean Daphnia density was a good predictor of Chl a concentration (p > 0.001). Both residuals from the TP - Chl a relationship (p > 0.001) and Secchi depth (p > 0.007) were negatively correlated with Daphnia abundance. Ceriodaphnia abundance was positively correlated with Chl a (p > 0.002) and Secchi depth (p > 0.001). Mean size of Daphnia during spring was the best predictor of the Daphnia-Ceriodaphnia shift in mid-summer. Early establishment of a large-sized Daphnia cohort may prevent their summer elimination by Chaoborus and intensify competition with Ceriodaphnia. These results imply an important link between Daphnia and Ceriodaphnia thereby limiting the utility of Chl a - TP model predictions in these small, urban lakes. This linkage and the differential effect of these two zooplankton species on planktonic algae deserve further consideration in similar lakes where phytoplankton and zooplankton tend to be tightly coupled.  相似文献   

5.
Meijer  M. L.  van Nes  E. H.  Lammens  E. H. R. R.  Gulati  R. D.  Grimm  M. P.  Backx  J.  Hollebeek  P.  Blaauw  E. M.  Breukelaar  A. W. 《Hydrobiologia》1994,(1):31-42
In 1990 an experiment started in the large and shallow lake Wolderwijd (2700 ha, mean depth 1.5 m) to improve the water quality. About 75% of the fish stock was removed (425 000 kg fish). The fish was mainly composed of bream and roach. In May 600000 young pikes (3–4 cm) were introduced.In May 1991 the water became very clear (Secchi depth 1.8 m) during a spring bloom of large Daphnia. Then the grazing by zooplankton was eight times higher than the primary production of algae and the total suspended matter concentration became very low. Compared to the situation before the fish reduction, the grazing had increased only slightly, while the primary production had decreased significantly in early spring. The fish stock reduction might have contributed to the reduction in primary production by a reduced internal nutrient load. The clear water period lasted six weeks. Daphnia disappeared in July due to food limitation, the algal biomass increased and the Secchi depth became 50 cm. Daphnia did not recover during summer, due to predation that was not caused by 0 + fish but by the mysid shrimp Neomysis integer. Neomysis could develop abundantly, because of the reduced biomass of the predator perch. The production of young fish had been low because of the cold spring weather. The cold weather was probably also responsible for the slow increase in density of macrophytes. After 1991, perch probably can control Neomysis. Due to lack of spawning places and shelter for 0 + pike, pike was probably not able to control the production of 0 + fish. In a lake of this scale, it will not be easy to get more than 50% coverage of macrophytes, which seems necessary to keep the algal biomass low by nutrient competition. Therefore, we expect also in the future a decrease in transparency in the summer. Locally, especially near Characeae, the water might stay clear.  相似文献   

6.
1. Grazer and nutrient controls of phytoplankton biomass were tested on two reservoirs of different productivity to assess the potential for zooplankton grazing to affect chlorophyll/phosphorus regression models under Australian conditions. Experiments with zooplankton and nutrients manipulated in enclosures, laboratory feeding trials, and the analysis of in-lake plankton time series were performed. 2. Enclosures with water from the more productive Lake Hume (chlorophyll a = 3–17.5 μg l–1), revealed significant zooplankton effects on chlorophyll a in 3/6, phosphorus limitation in 4/6 and nitrogen limitation in 1/6 of experiments conducted throughout the year. Enclosures with water from the less productive Lake Dartmouth (chlorophyll a = 0.8–3.5 μg l–1), revealed significant zooplankton effects in 5/6, phosphorus limitation in 5/6 and nitrogen limitation in 2/6 of experiments. 3. While Lake Hume enclosure manipulations of the biomass of cladocerans (Daphnia and Diaphanosoma) and large copepods (Boeckella) had negative effects, small copepods (Mesocyclops and Calamoecia) could have positive effects on chlorophyll a. 4. In Lake Hume, total phytoplankton biovolume was negatively correlated with cladoceran biomass, positively with copepod biomass and was uncorrelated with total crustacean biomass. In Lake Dartmouth, total phytoplankton biovolume was negatively correlated with cladoceran biomass, copepod biomass and total crustacean biomass. 5. In both reservoirs, temporal variation in the biomass of Daphnia carinata alone could explain more than 50% of the observed variance in total phytoplankton biovolume. 6. During a period of low phytoplankton biovolume in Lake Hume in spring–summer 1993–94, a conservative estimate of cladoceran community grazing reached a maximum of 0.80 day–1, suggesting that Cladocera made an important contribution to the development of the observed clear-water phase. 7. Enclosure experiments predicted significant grazing when the Cladocera/Phytoplankton biomass ratio was greater than 0.1; this threshold was consistently exceeded during clear water phase in Lake Hume. 8. Crustacean length had a significant effect on individual grazing rates in bottle experiments, with large Daphnia having highest rates. In both reservoirs, mean crustacean length was negatively correlated with phytoplankton biovolume. The observed upper limit of its variation was nearly twice as high compared to other world lakes.  相似文献   

7.
The dynamics of crustacean zooplankton in the littoral and pelagic zones of four forest lakes having variable water qualities (colour range 130–340 mg Pt l−1, Secchi depth 70–160 cm) were studied. The biomass of zooplankton was higher in the littoral zone than in the pelagic zone only in the lake having the highest transparency. In the three other lakes, biomass was significantly higher in the pelagic zone than in the littoral zone. In the two lakes with highest transparency, the littoral biomass of cladocerans significantly followed the development of macrophyte vegetation, and cladoceran biomass reached the maximum value at the time of highest macrophyte coverage. In lakes with lowest transparency, littoral zooplankton biomass developed independently of macrophyte density and decreased when macrophyte beds were densest. The seasonal development of the littoral copepod biomass did not follow the development of macrophytes in any of the lakes. The mean size of cladocerans in the pelagic zone decreased with increasing Secchi depth of the lake, whereas in the littoral zone no such phenomenon was detected. Seasonally, when water transparency increased temporarily in two of the lakes, the mean size of cladocerans in the pelagic zone decreased steeply. For copepods, no relationship between water transparency and body size was observed. The results suggested that in humic lakes the importance of the littoral zone as a refuge decreases with decreasing transparency of the water and that low water transparency protects cladocerans from fish predation. All the observed between-lake differences could not be explained by fish predation, but were probably attributed to the presence of chaoborid larvae with variable densities. Feeding efficiency of chaoborids is not affected by visibility and thus they can obscure the relationship between water quality, fish density, and the structure of crustacean zooplankton assemblages. Handling editor: S. I. Dodson  相似文献   

8.
1. Strong vertical gradients in light, water temperature, oxygen, algal concentration and predator encounters during summer in stratified lakes may influence patterns of depth selection in crustacean zooplankton, especially Daphnia species. 2. To test how crustacean depth selection varies among lakes along a gradient of catchment disturbance by recent residential development and land use change, we calculated the weighted mean depth distribution of the biomass of crustaceans by day and night in eight nutrient‐poor boreal lakes. 3. Generally, the greatest biomass of crustaceans was located at the metalimnion or at the lower boundary of the euphotic zone during thermal stratification in July. The crustacean zooplankton avoided warm surface layers and tended to stay in colder deep waters by both day and night. They also remained at greater depths in lakes with a more extensive euphotic zone. 4. There was some evidence of upward nocturnal migrations of large Daphnia and copepods in some lakes, and one case of downward migration in a lake inhabited by chaoborid larvae. 5. Multivariate regression trees (MRT) were used to cluster crustaceans and Daphnia species in homogeneous groups based on lake natural and disturbance factors. For crustaceans, the depth of the euphotic zone, the sampling depth (epilimnion, metalimnion and hypolimnion), time (day or night) of sampling and the biomass of chlorophyll a were the main driving factors. For Daphnia species, the drainage area, the sampling depth, the cleared land surface area within the catchment and the concentration of total dissolved phosphorus were the main factors.  相似文献   

9.
Summary Numerous adaptive predator-induced responses occurred when eight clones representing seven Daphnia (Crustacea: Cladocera) species were tested against three common predators: fourth instar larval phantom midge Chaoborus americanus, adult backswimmer Notonecta undulata, and small sunfish Lepomis macrochirus. The predators were confined within small mesh bags, suggesting that the signal for induction is chemical. The induced responses included longer tail spines, longer heads, smaller bodies, increased egg clutches, and decreased lipid reserves. Each Daphnia species responded to each of the three predators in a unique manner. Induced responses in the above characters showed no significant association. The induced morphological changes are generally consistent with current theories of what is an adaptive response for the various sizes of Daphnia exposed to tactile and visual predators. The abundance of induced responses in these experiments suggests that predator-induced responses are a widespread and ecologically important phenomenon of the freshwater zooplankton.  相似文献   

10.
11.
SUMMARY.
  • 1 A marked gradient in water transparency along the 75 km longitudinal axis of Lake le Roux, a fjord-like reservoir on the Orange River, South Africa, was consistently evident over several years. On average, Secchi depth transparency doubled from approximately 18 cm at the turbid upper end (which is fed by sediment-laden Orange River water discharged from Lake Verwoerd), to 33 cm near the dam wall. A variety of changes in abiotic limn logical attributes (temperature, light attenuation, suspended solids and nutrient levels, etc.), and in the abundance and composition of planktonic biota accompany, and may be imposed by, this turbidity gradient.
  • 2 On average, phytoplankton abundance (assessed as chlorophyll content), and total crustacean zooplankton biomass (per unit volume) were lowest at the very top of the lake, but reached maximal values within 15 km ‘downstream’, reflecting the rapid development of plankton. These variables subsequently declined downstream, in contrast to the apparent improvement in conditions for planktonic existence (increasing water transparency, longer water residence time, etc.).
  • 3 The composition of crustacean zooplankton varied along the length of the reservoir. Both seasonal and inter-annual differences were evident. On average, however, cladocerans (Daphnia, Moina), despite their r-selected attributes, were especially sparse in the more turbid, uppermost reaches, where advective effects of river inflows were most pronounced. The large predatory copepod Lovenula was surprisingly most abundant in this region, where potential planktonic curstacean prey was scarce. The attainment of maximal zooplankton standing slocks some 15 km downstream was attributable to the proliferation particularly of the herbivorous copepod Metadiaptomus, along with minor increases in several ctadoceran components. The latter continued to increase downstream, in line with declining turbidity, although Daphnia and Moina reached their respective abundance maxima in central and lower reaches of the reservoir, reflecting slight disparities in response to turbidity or related gradients. By contrast.
  相似文献   

12.
Among the topics covered by Hutchinson’s Santa Rosalia article, the question of the shortening and lengthening of food webs occupies a central role. As Hutchinson realized, at the time scales of ecological studies, the impact of invader species on established food webs is the fastest shortcut to the shortening or lengthening of the food webs. The construction of thousands of dams in Spain during the last century has offered ecologists a good opportunity to test the effects of invader fish species on the plankton dynamics of these systems. In this article, a series of data related to the food web structure of Sau Reservoir is analyzed for the period 1997–2005. Parameters such as Secchi depth and chlorophyll concentration, as well as abundance and size structure of zooplankton, have been matched to the zooplankton dynamics in the reservoir. Most of the changes detected within this period are attributed to the introduction of zooplanktivorous fish in the reservoir. The Secchi depth measurements have showed a progressive diminution in the clear-water phase during recent years. These changes have been related to the decrease in the abundance of Daphnia and to the reduction of the size of zooplankton, which help to explain concomitant increases in the chlorophyll concentration in the same period. Other observed changes in the composition of the zooplankton community have been the substitution of Daphnia by Bosmina and the increase in the abundance of rotifers. Thus, the annual average abundance of Bosmina in 1997 was 70% of cladocerans, while in 2005 it reached 98%. In parallel, the percentage occurrence of individual rotifers was 40% of total zooplankton numbers but had risen to 85% at the end of the period. All these changes are attributed to the artificial expansion of the food web through stocking of the reservoir with zooplanktivorous fish (Rutilus rutilus and Alburnus alburnus). This study improves our understanding of the trophic relationships in the food web prior to the introduction of the fish.  相似文献   

13.
Berg  S.  Jeppesen  E.  Søndergaard  M.  Mortensen  E. 《Hydrobiologia》1994,(1):71-79
The impact of whitefish (Coregonus lavaretus (L.)) on the trophic structure of eutrophic lakes was studied in Lake Ring, a small eutrophic Danish lake (22.5 ha, mean depth 2.9 m) in which the natural fish fauna is dominated by pike (Esox lucius L.), perch (Perca fluviatilis L.), and eel (Anguilla anguilla (L.)), roach (Rutilus rutilus (L.)) and burbot (Lota lota (L.)) being the only other fish species present. A total of 10993 0+ whitefish were stocked in the lake from October 1989 to July 1990 and the structure of the fish, zooplankton and benthic invertebrate communities studied during the period 1989–1991. Stomach contents analysis revealed that the whitefish mainly ate Daphnia and copepods in 1990–1991, the proportion of copepods decreasing with increasing size of the fish and Daphnia being the overall most important food source. The density of Daphnia in the lake decreased from 72 ind. 1-1 in 1989 to 9 ind. 1-1 in 1991; concomitantly the large species Daphnia magna and D. pulex almost disappeared and the density of cyclopoid copepods increased from 72 to 101 ind. 1-1, presumably because of improved food conditions, while that of calanoid copepods remained virtually unchanged. As a result chl-a increased from 19 to 47 µg 1-1 and Secchi depth decreased from 2.4 m to 1.7 m, despite there being no change in total P and total N (0.6 mg P 1-1 and 1.3 mg N 1-1, respectively). Changes were also observed in the benthic invertebrates; Chaoborus, oligochaetes, and chironomids all decreased, whereas Pisidium increased. It is concluded that the stocking of whitefish in eutrophic lakes for commercial purposes may delay their recovery, or even lead to enhanced eutrophication.  相似文献   

14.
A positive relationship was observed between Secchi disc depth and dermal melanin concentration in yellow perch Perca flavescens sampled from 11 humic lakes located on the Canadian Shield in southern Quebec (Canada). Secchi disc depth explained 23% of the variations of dermal melanin concentration. Secchi disc depth and thus water transparency appear to have a positive influence on melanin production in the dermis of P. flavescens.  相似文献   

15.
Branstrator  Donn K.  Holl  Carolyn M. 《Hydrobiologia》2000,437(1-3):101-106
Leptodora kindti (Crustacea: Cladocera) is a large species of zooplankton (2–18 mm length) that is exceptionally transparent. This transparency is believed to be a means by which it successfully coexists in lakes with planktivorous fishes. We investigated the gut remains of bluegill (Lepomis macrochirus) that had been feeding on L. kindti and Daphnia (D. galeata and D. retrocurva) in the wild (Lake Zurich, Illinois) and found that bluegill readily preyed on L. kindti as small as 3–5 mm length, and strongly selected L. kindti over Daphnia galeata and Daphnia retrocurva. The large compound eye of L. kindti is one half to one complete order of magnitude larger than Daphnia's eye, consistent with the hypothesis that eye area is an important visual cue for fishes. Moreover, the slope of the relationship between eye area and body length is an order of magnitude shallower in L. kindti than Daphnia, suggesting that eye area has been under stronger negative selection in L. kindti. Results suggest that L. kindti's large and dark eye compromises the transparent nature of its body.  相似文献   

16.
The population behavior of Daphnia gessneri Herbst, 1967 in a floodplain lake (Lago Grande) of the lower Rio Solimões was investigated between April 1979 and March 1980 with regard to 1) predation by the fish called tambaqui (Colossoma macropomum, Characidae), 2) water level fluctuation and 3) water transparency. Zooplankton density samples were collected at two sites near mid-lake, where water depth and Secchi disc transparency were measured. In addition, qualitative samples of zooplankton and fish collections were taken at several sites in the adjacent floodplain areas. The author concludes that fluctuations in Daphnia gessneri populations correlate most with intense predation by fish and water turbidity.  相似文献   

17.
Despite many ecological studies the population morphological variability within the freshwater crustacean genus Daphnia is poorly investigated, especially during postembryonic development. Unusual phenotypic plasticity of some Daphnia species results in tremendous difficulties in morphological species delineation. The ontogenetic morphological variation of this species was studied, revealing the general trends in body shape variation in different populations. The morphotypes of size and age groups of D. galeata turned out to be more variable at the mouth of the Kargat River (Lake Chany basin) than in Lake Todzha (Bol’ shoi Yenisei River basin); however, the growth of characters such as the helmet and tail spine was described by an allometric function and their absolute sizes decreased with age in Daphnia from both water basins. It is shown that the first mature size-and-age group of D. galeata is most suitable for investigating population morphological variation.  相似文献   

18.
Ersin Kivrak 《Biologia》2006,61(4):339-345
Seasonal changes in phytoplankton community structure of the lake Tortum were studied over one year period, from March 2002 to February 2003. The collected data were compared with the data collected 21 years ago. Chlamydomonas microsphaerella, Cyclotella krammeri, C. glomerata, and Ceratium hirundinella were identified to be dominant several times during the study period. Species diversity and biomass of the phytoplankton were very low in spite of sufficient and high levels of nutrient concentrations. Maximum phytoplankton density levels were observed during summer and late autumn. Phytoplankton density was positively correlated with nutrients, temperature and pH, and it was negatively correlated with Secchi depth and dissolved oxygen. Phytoplankton growths were negatively affected from water transparency and high levels of water mass transport (circulation) and velocity in the lake.  相似文献   

19.
Colonization of submerged macrophytes and changes in species composition were studied in shallow Lake Væng during the first five years (1987–91) following fish manipulation in 1986–1988 and a resultant significant improvement in lake water transparency. No submerged macrophytes were present in the lake from 1981–1986, during which time the summer mean Secchi depth ranged from 0.6 and 0.8 m. From 1987 to 1990, Secchi depth increased from 0.9 m to 1.8 m and macrophyte coverage consequently increased (1 % of the lake area in 1987, 2% in 1988, 50% in 1989, 80% in 1990 and 90% in 1991). At the same time, the macrophytes became taller, and the weedbeds more dense. The macrophytes colonized from the exposed and deeper part of the lake towards the sheltered and more shallow part of the lake, a colonization pattern that was confirmed by transplantation experiments. The delay in colonization of the shallow parts may be caused by waterfowl grazing. The vegetation was initially dominated by Potamogeton crispus L., but there was a gradual change during 1988–1989 and Elodea canadensis Michx became exclusively dominant in 1990–1991.  相似文献   

20.
Seasonality of burden and prevalence of phototrophic (microalgal) epibionts Characidiopsis ellipsoidea, Colacium vesiculosum and Colacium sp. on dominating crustacean zooplankton (Daphnia longispina, Cyclops vicinus and Mesocyclops leuckarti) were studied in a small reservoir Bugach with cyanobacterial bloom. The correlations between the seasonal dynamics of prevalence and the dynamics of others biotic and abiotic factors were calculated. The conclusions were as follows. The substrate species, that determined the development of the epibionts on the three studied crustacean zooplankton, was Daphnia longispina (Cladocera). Despite intensive epibiotic infestation of crustacean zooplankton, epibionts did not appear to have caused non-consumptive mortality of the crustacean zooplankton. But they could have contributed to the Daphnia summer decline by increasing mortality due to its consumption by planktivorous fishes. The phototropic epibionts may successfully coexist with cyanobacterial bloom. The possible role of the epibionts in changing nutrient fluxes in pelagic food web is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号