首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
Mast cells have the ability to react to multiple stimuli, implicating these cells in many immune responses. Specific signals from the microenvironment in which mast cells reside can activate different molecular events that govern distinct mast cells responses. We previously demonstrated that hydrogen peroxide (H(2)O(2)) promotes IL-4 and IL-6 mRNA production and potentates FcepsilonRI-induced cytokine release in rat basophilic leukemia RBL-2H3 cells. To further evaluate the effect of an oxidative microenvironment (which is physiologically present in an inflammatory site) on mast cell function and the molecular events responsible for mast cell cytokine production in this environment, we analyzed the effect of H(2)O(2) treatment on IL-4 production in bone marrow-derived, cultured mast cells. Our findings show that nanomolar concentrations of H(2)O(2) induce cytokine secretion and enhance IL-4 production upon FcepsilonRI triggering. Oxidative stimulation activates a distinct signal transduction pathway that induces Fyn/PI3K/Akt activation and the selective phosphorylation of p38 MAP kinase. Moreover, H(2)O(2) induces AP-1 and NFAT complexes that recognize the IL-4 promoter. The absence of Fyn and PI3K or the inhibition of p38 MAPK activity demonstrated that they are essential for H(2)O(2)-driven IL-4 production. These findings show that mast cells can respond to an oxidative microenvironment by initiating specific signals capable of eliciting a selective response. The findings also demonstrate the dominance of the Fyn/p38 MAPK pathway in driving IL-4 production.  相似文献   

3.
Reactive oxygen species (ROS) are important for intracellular signaling mechanisms regulating many cellular processes. Manganese superoxide dismutase (MnSOD) may regulate cell growth by changing the level of intracellular ROS. In our study, we investigated the effect of ROS on 7721 human hepatoma cell proliferation. Treatment with H2O2 (1-10 microM) or transfection with antisense MnSOD cDNA constructs significantly increased the cell proliferation. Recently, the mitogen-activated protein kinases (MAPK) and the protein kinase B (PKB) were proposed to be involved in cell growth. Accordingly, we assessed the ability of ROS to activate MAPK and PKB. PKB and extracellular signal-regulated kinase (ERK) were both rapidly and transiently activated by 10 microM H2O2, but the activities of p38 MAPK and JNK were not changed. ROS-induced PKB activation was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002, suggesting that PI3-K is an upstream mediator of PKB activation in 7721 cells. Transfection with sense PKB cDNA promoted c-fos and c-jun expression in 7721 cells, suggesting that ROS may regulate c-fos and c-jun expression via the PKB pathway. Furthermore we found that exogenous H2O2 could stimulate the proliferation of PKB-AS7721 cells transfected with antisense PKB cDNA, which was partly dependent on JNK activation, suggesting that H2O2 stimulated hepatoma cell proliferation via cross-talk between the PI3-K/PKB and the JNK signaling pathways. However, insulin could stimulate 7721 cell proliferation, which is independent of cross-talk between PI3-K/PKB and JNK pathways. In addition, H2O2 did not induce the cross-talk between the PI3-K/PKB and the JNK pathways in normal liver cells. Taken together, we found that ROS regulate hepatoma cell growth via specific signaling pathways (cross-talk between PI3-K/PKB and JNK pathway) which may provide a novel clue to elucidate the mechanism of hepatoma carcinogenesis.  相似文献   

4.
The osteoblasts could be lead to the occurrence of apoptosis by oxidative stress. The zinc transporter family SLC30A (ZnTs) plays an important role in the regulation of zinc homeostasis, however, its function in apoptosis of MC3T3-E1 cells remains unknown. This study was aimed to investigate the role of zinc transporters in cell survival, particularly in MC3T3-E1 cells, during oxidative stress, and the molecular mechanism involved. Our study found that hydrogen peroxide can induce zinc-overloaded in the cells. While high concentration of zinc plays an important role in inducing apoptosis of the MC3T3-E1 cells, we demonstrated that ZnT7 can protect MC3T3-E1 cells and reduce the aggregation of intracellular free zinc ions as well as inhibit apoptosis induced by H2O2. Moreover, ZnT7 overexpression enhanced the anti-apoptotic effects. Interestingly, suppression of ZnT7 by siRNA could significantly exacerbate apoptosis in MC3T3-E1 cells. We also found that ZnT7 promotes cell survival via two distinct signaling pathways involving activation of the PI3K/Akt-mediated survival pathway and activation of MAPK/ERK pathway. Collectively, these results suggest that ZnT7 overexpression significantly protects osteoblasts cells from apoptosis induced by H2O2. This effect is mediated, at least in part, through activation of PI3K/Akt and MAPK/ERK pathways.  相似文献   

5.
Hong F  Kwon SJ  Jhun BS  Kim SS  Ha J  Kim SJ  Sohn NW  Kang C  Kang I 《Life sciences》2001,68(10):1095-1105
Oxidative stress plays a critical role in cardiac injuries during ischemia/reperfusion. Insulin-like growth factor-1 (IGF-1) promotes cell survival in a number of cell types, but the effect of IGF-1 on the oxidative stress has not been elucidated in cardiac muscle cells. Therefore, we examined the role of IGF-1 signaling pathway in cell survival against H2O2-induced apoptosis in H9c2 cardiac myoblasts. H2O2 treatment induced apoptosis in H9c2 cells, and pretreatment of cells with IGF-1 suppressed apoptotic cell death. The antiapoptotic effect of IGF-1 was blocked by LY294002 (an inhibitor of phosphatidylinositol 3-kinase) and by PD98059 (an inhibitor of extracellular signal-regulated kinase (ERK)). The protective effect of IGF-1 was also blocked by rapamycin (an inhibitor of p70 S6 kinase). Furthermore, H9c2 cells stably transfected with constitutively active PI 3-kinase (H9c2-p110*) and Akt (H9c2-Gag-Akt) constructs were more resistant to H2O2 cytotoxicity than control cells. Although H2O2 activates both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), IGF-1 inhibited only JNK activation. Activated PI 3-kinase (H9c2-p110*) and pretreatment of cells with IGF-1 down-regulated Bax protein levels compared to control cells. Taken together, our results suggest that IGF-1 transmits a survival signal against oxidative stress-induced apoptosis in H9c2 cells via PI 3-kinase and ERK-dependent pathways and the protective effect of IGF-1 is associated with the inhibition of JNK activation and Bax expression.  相似文献   

6.
A growing body of evidence supports a central role for biometals in neurodegenerative disorders. Biometals induce oxidative stress through the generation of reactive oxygen species and contribute to neuronal cell dysfunction in Alzheimer's disease (AD), prion disorders and Parkinson's disease (PD). Therapies based on modulation of biometal metabolism are currently being developed and the metal ligand, 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol or CQ) has been investigated for the treatment of AD. CQ has also shown therapeutic benefits in an animal model of PD. However, little is known about the neuroprotective processes of CQ in vivo. In this study, we examined the effect of CQ in BE(2)-M17 human neuroblastoma cells exposed to increased oxidative stress (hydrogen peroxide (H2O2) treatment). Although CQ alone induced a moderate toxic effect on cells, when added to H2O2-treated M17 cells, CQ induced a significant inhibition of H2O2 toxicity. This correlated with up-regulation of phosphoinositol-3-kinase (PI3K) activity in CQ-treated cells. The protective action of CQ was not observed in murine N2a neuroblastoma cells treated with H2O2 and this cell-line did not reveal CQ-mediated increases in PI3K activation. The protective effect was specific for CQ and was not induced by a number of different metal ligands. Inhibition of PI3K activity with LY294002 prevented CQ protection against H2O2 toxicity, demonstrating a crucial role for CQ activation of PI3K in protection against oxidative stress. Furthermore, CQ inhibited H2O2-mediated up-regulation of p53 activity in the M17 cells and this was dependent on PI3K activation. Our studies demonstrate that in human M17 cells, CQ can protect against oxidative stress by activating the PI3K-dependent survival pathway and blocking p53-mediated cell death. These findings have important implications for the development of protective metal ligand-based therapies for treatment of disorders involving oxidative stress.  相似文献   

7.
Oxidative stress can cause significant cell death by apoptosis. We performed studies in L-cells to explore whether prior exposure to oxidative stress ("oxidative preconditioning") can protect the cell against the apoptotic consequences of subsequent oxidative insults and to establish the mediators in the preconditioning signaling cascade. Cells were preconditioned with three 5-min exposures to H(2)O(2), followed by 10-h recovery and subsequent exposure to 600 microm H(2)O(2) for 10 h. A single 10-h exposure to H(2)O(2) induced substantial apoptotic cell death (approximately 90%), as determined by enzyme-linked immunosorbent assay, TUNEL (terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling), and Annexin V methods, but apoptosis was largely prevented in preconditioned cells. The degree of cytoprotection depended on the strength of preconditioning or H(2)O(2) concentration (20 approximately 600 microm). Transient increases in mitogen-activated protein kinase (MAPK), p38, and JNK/SAPK activities and sustained protein kinase B (Akt) activation, accompanied by drastically reduced caspase 3 activity, were seen after preconditioning. The expression levels of these kinases were unaltered. Inhibitors of p38 (SB203580) and phosphoinositide 3-kinase (PI3K, LY294002) pathways abolished the protection provided by preconditioning. We conclude that oxidative preconditioning protects cells against apoptosis and that this effect involves MAPK and PI3K/Akt pathways. This system may be important in regulating apoptotic cell death in development and disease states.  相似文献   

8.
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress.  相似文献   

9.
Recently, many studies have attempted to illustrate the mechanism of autophagy in protection against oxidative stress to the heart induced by H(2)O(2). However, whether resveratrol-induced autophagy involves the p38 mitogen-activated protein kinase (MAPK) pathway is still unknown. This study aimed to investigate whether treating H9c2 cells with resveratrol increases autophagy and attenuates the cell death and apoptosis induced by oxidative stress via the p38 MAPK pathway. Resveratrol with or without SB202190, an inhibitor of the p38 MAPK pathway, was added 30 min before H(2)O(2). After H(2)O(2) treatment, the cells were incubated under 5% CO(2) at 37 °C for 24 h to assess cell survival and death or incubated for 20 min for Western blot and transmission electron microscopy. Flow cytometry was used to detect apoptosis after 6 h of H(2)O(2) treatment. Resveratrol at 20 μmol/L protected H9c2 cells treated with 100 μmol/L H(2)O(2) from oxidative damage. It increased cell survival and markedly decrease lactate dehydrogenase release. In addition, resveratrol increased autophagy and decreased H(2)O(2)-induced apoptosis. Furthermore, the protective effects of resveratrol were inhibited by 10 μmol/L SB202190. Thus, resveratrol protected H(2)O(2)-treated H9c2 cells by upregulating autophagy via the p38 MAPK pathway.  相似文献   

10.
Neuregulins (NRGs), a large family of transmembrane polypeptide growth factors, mediate various cellular responses depending on the cell type and receptor expression. We previously showed that NRG mediates survival of PC12-ErbB4 cells from apoptosis induced by serum deprivation or tumor necrosis factor-alpha treatment. In the present study we show that NRG induces a significant protective effect from H(2)O(2)-induced death. This effect of NRG is mediated by the phosphatidylinositol 3-kinase (PI3K)-signaling pathway since NRG failed to rescue cells from H(2)O(2) insult in the presence of the PI3K inhibitor, LY294002. Furthermore, the downstream effector of PI3K, protein kinase B/AKT, is activated by NRG in the presence of H(2)O(2), and protein kinase B/AKT activation is inhibited by LY294002. In addition, our results demonstrate that reactive oxygen species (ROS) elevation induced by H(2)O(2) is inhibited by NRG. LY294002, which blocks NRG-mediated rescue, increases ROS levels. Moreover, both H(2)O(2)-induced ROS elevation and cell death are reduced by expression of activated PI3K. These results suggest that PI3K-dependent pathways may regulate toxic levels of ROS generated by oxidative stress.  相似文献   

11.
To clarify the signaling pathways of oxidative stress-induced apoptosis in bovine aortic endothelial cells (BAEC), we treated cells with 1 mM H 2 O 2 and investigated the roles of protein kinase C δ(PKC δ) and Ca 2+ in the accumulation of p53 associated with apoptosis. The treatment of cells with H 2 O 2 caused the accumulation of p53, which was inhibited by rottlerin (a PKC δinhibitor) but not by BAPTA-AM (an intracellular Ca 2+ chelator). PKC δitself was activated through the phosphorylation at tyrosine residues. H 2 O 2 induced the release of cytochrome c and the activation of caspases 3 and 9, and these apoptotic signals were inhibited by rottlerin and BAPTA-AM. These results suggest that PKC δcontributes to the accumulation of p53 and that Ca 2+ plays a role in downstream signals of p53 leading to apoptosis in H 2 O 2 -treated BAEC.  相似文献   

12.
Protein kinase B (PKB) is a downstream target of phosphatidylinositol (PI) 3-kinase in the signaling pathway of growth factors, and is activated by cellular stress such as H(2)O(2) and heat shock. To study the mechanism of the stress-induced activation of PKB, PI 3-kinase products were measured in stress-stimulated cells. Both PI 3,4-bisphosphate and PI 3,4, 5-trisphosphate increased in H(2)O(2)-treated cells, and the elevation of these phospholipids and activation of PKB were concurrently blocked by wortmannin, a potent inhibitor of PI 3-kinase. In heat-shocked cells, the level of PI 3,4-bisphosphate did not change while that of PI 3,4,5-trisphosphate increased slightly, and an association between PKB molecules was observed. Two active PKB fractions, presumably monomeric and oligomeric forms, were resolved from heat-shocked cells by gel filtration column chromatography. Activation of the former was suppressed by pretreatment with wortmannin, whereas the generation and activation of the latter were not blocked by the PI 3-kinase inhibitor. Only the monomeric form, but not the oligomeric form, was recovered from H(2)O(2)-treated cells, and its activation was prevented by wortmannin. These results indicate that PKB is activated by two distinct mechanisms that are dependent and independent of PI 3-kinase in stress-stimulated cells.  相似文献   

13.
The role of phospholipase D (PLD) activation in hydrogen peroxide (H(2)O(2))-induced signal transduction and cellular responses is not completely understood. Here we present evidence that Ca(2+)-dependent tyrosine kinase, Pyk2, requires PLD activation to mediate survival pathways in rat pheochromocytoma PC12 cells under oxidative stress. The H(2)O(2)-induced phosphorylation of two Pyk2 sites (Tyr(580), and Tyr(881)) was suppressed by 1-butanol, an inhibitor of transphosphatidylation by PLD, and also by transfection of catalytically negative mouse PLD2K758R (PLD2KR). Furthermore, we found that PLD2 was associated with Pyk2 and Src, and that activation of PLD2 was required for H(2)O(2)-enhanced association of Src with Pyk2 leading to full activation of Pyk2. H(2)O(2)-induced phosphorylation of Akt and p70S6K was dependent on phosphatidylinositol 3-kinase (PI3K) activity and was abolished by 1-butanol but not t-butanol. Furthermore, the PI3K/Akt activation in response to H(2)O(2) was reduced by transfection of either PLD2KR or the dominant negative Pyk2DN. This study is the first demonstration that PLD2 activation is implicated in Src-dependent phosphorylation of Pyk2 (Tyr(580) and Tyr(881)) by promoting the complex formation between Pyk2 and activated Src in PC12 cells exposed to H(2)O(2), thereby resulting in activation of the survival signaling pathway PI3K/Akt/p70S6K.  相似文献   

14.
Mitogen-activated protein kinases (MAPKs) play different regulatory roles in signaling oxidative stress-induced apoptosis in cardiac ventricular myocytes. The regulation and functional role of cross-talk between p38 MAPK and extracellular signal-regulated kinase (ERK) pathways were investigated in cardiac ventricular myocytes in the present study. We demonstrated that inhibition of p38 MAPK with SB-203580 and SB-239063 enhanced H(2)O(2)-stimulated ERK phosphorylation, whereas preactivation of p38 MAPK with sodium arsenite reduced H(2)O(2)-stimulated ERK phosphorylation. In addition, pretreatment of cells with the protein phosphatase 2A (PP2A) inhibitors okadaic acid and fostriecin increased basal and H(2)O(2)-stimulated ERK phosphorylation. We also found that PP2A coimmunoprecipitated with ERK and MAPK/ERK (MEK) in cardiac ventricular myocytes, and H(2)O(2) increased the ERK-associated PP2A activity that was blocked by inhibition of p38 MAPK. Finally, H(2)O(2)-induced apoptosis was attenuated by p38 MAPK or PP2A inhibition, whereas it was enhanced by MEK inhibition. Thus the present study demonstrated that p38 MAPK activation decreases H(2)O(2)-induced ERK activation through a PP2A-dependent mechanism in cardiac ventricular myocytes. This represents a novel cellular mechanism that allows for interaction of two opposing MAPK pathways and fine modulation of apoptosis during oxidative stress.  相似文献   

15.
Exposure of WI38 human diploid fibroblasts (HDFs) to hydrogen peroxide (H2O2) induced premature senescence. The senescent HDFs were permanently arrested and exhibited a senescent phenotype including enlarged and flattened cell morphology and increased senescence-associated beta-galactosidase (SA-beta-gal) activity. The induction of HDF senescence was associated with an activation of p53, increased expression of p21Cip1/WAF1, and hypophosphorylation of retinoblastoma protein (Rb), while no changes in the expression of p16Ink4a, p27Kip1, and p14Arf were observed. Exposure of WI38 cells to H2O2 also selectively activated phosphatidylinostol 3-kinase (PI3 kinase) and mitogen-activated protein kinase (MAPK) kinase (MEK), while no changes in p38 MAPK and Jun kinase (JNK) activities were observed. Selective inhibition of PI3 kinase activity with LY294002 abrogated H2O2-induced cell enlargement and flattened morphology and significantly attenuated the increase in SA-beta-gal activity, but did not affect H2O2-induced cell cycle arrest. In contrast, selective inhibition of MEK and p38 MAPK with PD98059 and SB203580, respectively, produced no significant effect on H2O2-induced senescent phenotype and cell cycle arrest. These findings demonstrate that expression of the senescent phenotype can be uncoupled from cell cycle arrest in prematurely senescent cells induced by H2O2 and does not contribute to the maintenance of permanent cell cycle arrest.  相似文献   

16.
Phosphorylation of the serine/threonine kinase Akt has previously been shown to be increased by treatment of cells with H2O2; the target of H2O2 has not been clearly identified. Here we show that treatment of rat primary astrocytes with H2O2 resulted in increased Akt phosphorylation that was blocked by wortmannin. The thiol-reducing agent N-acetylcysteine had only a slight inhibitory effect. Treatment with rotenone or antimycin A also resulted in increased wortmannin-sensitive Akt phosphorylation, probably by increasing intracellular H2O2 generation by blocking mitochondrial electron transport. Addition of phosphatidylinositol 3,4-bisphosphate to cells also resulted in an increase in Akt phosphorylation. This increase was additive to that induced by H2O2 and was also blocked by wortmannin. These results suggest that activation of Akt by H2O2 occurs upstream of phosphatidylinositol 3-kinase (PI 3-K) activity in astrocytes. The data indicate that major oxidative effects do not occur at the level of the PI 3-K-antagonizing phosphatase PTEN.  相似文献   

17.
The serine/threonine kinase Akt (also known as protein kinase B) is activated in response to various stimuli by a mechanism involving phosphoinositide 3-kinase (PI3-K). Akt provides a survival signal that protects cells from apoptosis induced by growth factor withdrawal, but its function in other forms of stress is less clear. Here we investigated the role of PI3-K/Akt during the cellular response to oxidant injury. H(2)O(2) treatment elevated Akt activity in multiple cell types in a time- (5-30 min) and dose (400 microM-2 mm)-dependent manner. Expression of a dominant negative mutant of p85 (regulatory component of PI3-K) and treatment with inhibitors of PI3-K (wortmannin and LY294002) prevented H(2)O(2)-induced Akt activation. Akt activation by H(2)O(2) also depended on epidermal growth factor receptor (EGFR) signaling; H(2)O(2) treatment led to EGFR phosphorylation, and inhibition of EGFR activation prevented Akt activation by H(2)O(2). As H(2)O(2) causes apoptosis of HeLa cells, we investigated whether alterations of PI3-K/Akt signaling would affect this response. Wortmannin and LY294002 treatment significantly enhanced H(2)O(2)-induced apoptosis, whereas expression of exogenous myristoylated Akt (an activated form) inhibited cell death. Constitutive expression of v-Akt likewise enhanced survival of H(2)O(2)-treated NIH3T3 cells. These results suggest that H(2)O(2) activates Akt via an EGFR/PI3-K-dependent pathway and that elevated Akt activity confers protection against oxidative stress-induced apoptosis.  相似文献   

18.
ErbB2/HER2 and ErbB3/HER3, two members of the ErbB/HER family, together constitute a heregulin coreceptor complex that elicits a potent mitogenic and transforming signal. Among known intracellular effectors of the ErbB2/ErbB3 heregulin coreceptor are mitogen-activated protein kinase (MAPK) and phosphoinositide (PI) 3-kinase. Activation of the distinct MAPK and PI 3-kinase signaling pathways by the ErbB2/ErbB3 coreceptor in response to heregulin and their relative contributions to the mitogenic and transformation potentials of the activated coreceptor were investigated here. To this end, cDNAs encoding the wild-type ErbB3 protein (ErbB3-WT) and ErbB3 proteins with amino acid substitutions in either the Shc-binding site (ErbB3-Y1325F), the six putative PI 3-kinase-binding sites (ErbB3-6F), or both (ErbB3-7F) were generated and expressed in NIH-3T3 cells to form functional ErbB2/ErbB3 heregulin coreceptors. While the coreceptor incorporating ErbB3-WT activated both the MAPK and the PI 3-kinase signaling pathways, those incorporating ErbB3-Y1325F or ErbB3-6F activated either PI 3-kinase or MAPK, respectively. The ErbB2/ErbB3-7F coreceptor activated neither. Elimination of either signaling pathway lowered basal and eliminated heregulin-dependent expression of cyclin D1, which was in each case accompanied by an attenuated mitogenic response. Selective elimination of the PI 3-kinase pathway severely impaired the ability of heregulin to transform cells expressing the coreceptor, whereas attenuation of the MAPK pathway had a lesser effect. Thus, while both pathways contributed in a roughly additive manner to the mitogenic response elicited by the activated ErbB2/ErbB3 coreceptor, the PI 3-kinase pathway predominated in the induction of cellular transformation.  相似文献   

19.
Zhu Y  Shi YP  Wu D  Ji YJ  Wang X  Chen HL  Wu SS  Huang DJ  Jiang W 《DNA and cell biology》2011,30(10):809-819
Oxidative stress induces serious tissue injury in cardiovascular diseases. Salidroside, with its strong antioxidative and cytoprotective actions, is of particular interest in the development of antioxidative therapies for oxidative injury in cardiac diseases. We examined the pharmacological effects of salidroside on H9c2 rat cardiomyoblast cells under conditions of oxidative stress induced by hydrogen peroxide (H2O2) challenge. Salidroside attenuated H2O2-impaired cell viability in a concentration-dependent manner, and effectively inhibited cellular malondialdehyde production, lethal sarcolemmal disruption, cell necrosis, and apoptosis induced by H2O2 insult. Salidroside significantly augmented Akt phosphorylation at Serine 473 in the absence or presence of H2O2 stimulation; wortmannin, a specific inhibitor of PI3K, abrogated salidroside protection. Salidroside increased the intracellular mRNA expression and activities of catalase and Mn-superoxide dismutases in a PI3K-dependent manner. Our results indicated that salidroside protected cardiomyocytes against oxidative injury through activating the PI3K/Akt pathway and increasing the expression and activities of endogenous PI3K dependent antioxidant enzymes.  相似文献   

20.
PI3K-mammalian target of rapamycin and MAPK/ERK kinase (MEK)/mitogen-activated protein kinase (MAPK) are the most frequently dysregulated signaling pathways in cancer. A problem that limits the success of therapies that target individual PI3K-MAPK members is that these pathways converge to regulate downstream functions and often compensate each other, leading to drug resistance and transient responses to therapy. In order to overcome resistance, therapies based on cotreatments with PI3K/AKT and MEK/MAPK inhibitors are now being investigated in clinical trials, but the mechanisms of sensitivity to cotreatment are not fully understood. Using LC-MS/MS-based phosphoproteomics, we found that eukaryotic elongation factor 2 kinase (eEF2K), a key convergence point downstream of MAPK and PI3K pathways, mediates synergism to cotreatment with trametinib plus pictilisib (which target MEK1/2 and PI3Kα/δ, respectively). Inhibition of eEF2K by siRNA or with a small molecule inhibitor reversed the antiproliferative effects of the cotreatment with PI3K plus MEK inhibitors in a cell model–specific manner. Systematic analysis in 12 acute myeloid leukemia cell lines revealed that eEF2K activity was increased in cells for which PI3K plus MEKi cotreatment is synergistic, while PKC potentially mediated resistance to such cotreatment. Together, our study uncovers eEF2K activity as a key mediator of responses to PI3Ki plus MEKi and as a potential biomarker to predict synergy to cotreatment in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号