首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Low throughput is an inherent problem associated with most single-molecule biophysical techniques. We have developed a versatile tool for high-throughput analysis of DNA and DNA-binding molecules by combining microfluidic and dense DNA arrays. We use an easy-to-process microfluidic flow channel system in which dense DNA arrays are prepared for simultaneous imaging of large amounts of DNA molecules with single-molecule resolution. The Y-shaped microfluidic design, where the two inlet channels can be controlled separately and precisely, enables the creation of a concentration gradient across the microfluidic channel as well as rapid and repeated addition and removal of substances from the measurement region. A DNA array stained with the fluorescent DNA-binding dye YOYO-1 in a gradient manner illustrates the method and serves as a proof of concept. We have applied the method to studies of the repair protein Rad51 and could directly probe the concentration-dependent DNA-binding behavior of human Rad51 (HsRad51). In the low-concentration regime used (100 nM HsRad51 and below), we detected binding to double-stranded DNA (dsDNA) without positive cooperativity.  相似文献   

2.
3.
Direct visualization of DNA and proteins allows researchers to investigate DNA-protein interactions with great detail. Much progress has been made in this area as a result of increasingly sensitive single-molecule fluorescence techniques. At the same time, methods that control the conformation of DNA molecules have been improving constantly. The combination of both techniques has appealed to researchers ever since single-molecule measurements have become possible and indeed first implementations of such combined approaches have proven useful in the study of several DNA-binding proteins in real time. Here, we describe the technical state-of-the-art of various integrated manipulation-and-visualization methods. We first discuss methods that allow only little control over the DNA conformation, such as DNA combing. We then describe DNA flow-stretching approaches that allow more control, and end with the full control on position and extension obtained by manipulating DNA with optical tweezers. The advantages and limitations of the various techniques are discussed, as well as several examples of applications to biophysical or biochemical questions. We conclude with an outlook describing potential future technical developments in combining fluorescence microscopy with DNA micromanipulation technology.  相似文献   

4.
Tessler LA  Mitra RD 《Proteomics》2011,11(24):4731-4735
Single-molecule protein analysis provides sensitive protein quantitation with a digital read-out and is promising for studying biological systems and detecting biomarkers clinically. However, current single-molecule platforms rely on the quantification of one protein at a time. Conventional antibody microarrays are scalable to detect many proteins simultaneously, but they rely on less sensitive and less quantitative quantification by the ensemble averaging of fluorescent molecules. Here, we demonstrate a single-molecule protein assay in a microarray format enabled by an ultra-low background surface and single-molecule imaging. The digital read-out provides a highly sensitive, low femtomolar limit of detection and four orders of magnitude of dynamic range through the use of hybrid digital-analog quantification. From crude cell lysate, we measured levels of p53 and MDM2 in parallel, proving the concept of a digital antibody microarray for use in proteomic profiling. We also applied the single-molecule microarray to detect the p53-MDM2 protein complex in cell lysate. Our study is promising for development and application of single-molecule protein methods because it represents a technological bridge between single-plex and highly multiplex studies.  相似文献   

5.
During the past years, nanophotonics has provided new approaches to study the biological processes below the optical diffraction limit. How single molecules diffuse, bind and assemble can be studied now at the nanometric level, not only in solutions but also in complex and crowded environments such as in live cells. In this context fluorescence fluctuations spectroscopy is a unique tool since it has proven to be easy to use in combination with nanostructures, which are able to confine light in nanometric volumes. We review here recent advances in fluorescence fluctuations’ analysis below the optical diffraction limit with a special focus on nanoapertures milled in metallic films. We discuss applications in the field of single-molecule detection, DNA sequencing and membrane organization, and underscore some potential perspectives of this new emerging technology.  相似文献   

6.
The ability to monitor the progress of single-molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan oil drop experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single-enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions that result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized that allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using dark field microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single-molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties to reduce and/or shield the number of unproductive charges and allow for improved sensitivity.  相似文献   

7.
Ensemble Förster resonance energy transfer (FRET) results can be analyzed in a variety of ways. Due to experimental artifacts, the results obtained from different analysis approaches are not always the same. To determine the optimal analysis approach to use for Nanodrop fluorometry, we have performed both ensemble and single-molecule FRET studies on oligomers of double-stranded DNA. We compared the single-molecule FRET results with those obtained using various ensemble FRET analysis approaches. This comparison shows that for Nanodrop fluorometry, analyzing the increase of the acceptor fluorescence is less likely to introduce errors in estimates of FRET efficiencies compared with analyzing the fluorescence intensity of the donor in the absence and presence of the acceptor.  相似文献   

8.
The repair of double-stranded DNA breaks by homologous recombination is essential for maintaining genome integrity. Much of what we know about this DNA repair pathway in eukaryotes has been gleaned from genetics, in vivo experiments with GFP-tagged proteins and traditional biochemical experiments with purified proteins. However, many questions have remained inaccessible to these experimental approaches. Recent technological advances have made it possible to directly visualize the behaviors of individual DNA and protein molecules in vitro, and it is now becoming feasible to apply these technology-driven approaches to complex biochemical systems, such as those involved in the repair of damaged DNA. This report summarizes the use of total internal reflection fluorescence microscopy to probe fundamental aspects of protein-DNA interactions at the single-molecule level, and specific emphasis is placed on our efforts to develop new methods and techniques for studying DNA repair. Using these new approaches we are investigating the DNA-binding behavior of human Rad51 and we have recently demonstrated that this protein can slide on dsDNA via a one-dimensional random walk mechanism driven solely by thermal fluctuations of the surrounding solvent. Here, we highlight some possible implications of this recent finding, and we also briefly discuss the potential benefits of future single-molecule studies in the study of protein-DNA interactions and DNA repair.  相似文献   

9.
10.
Alterations in cytosine-5 DNA methylation are frequently observed in most types of human cancer. Although assays utilizing PCR amplification of bisulfite-converted DNA are widely employed to analyze these DNA methylation alterations, they are generally limited in throughput capacity, detection sensitivity, and or resolution. Digital PCR, in which a DNA sample is analyzed in distributive fashion over multiple reaction chambers, allows for enumeration of discrete template DNA molecules, as well as sequestration of non-specific primer annealing templates into negative chambers, thereby increasing the signal-to-noise ratio in positive chambers. Here, we have applied digital PCR technology to bisulfite-converted DNA for single-molecule high-resolution DNA methylation analysis and for increased sensitivity DNA methylation detection. We developed digital bisulfite genomic DNA sequencing to efficiently determine single-basepair DNA methylation patterns on single-molecule DNA templates without an interim cloning step. We also developed digital MethyLight, which surpasses traditional MethyLight in detection sensitivity and quantitative accuracy for low quantities of DNA. Using digital MethyLight, we identified single-molecule, cancer-specific DNA hypermethylation events in the CpG islands of RUNX3, CLDN5 and FOXE1 present in plasma samples from breast cancer patients.  相似文献   

11.
Rui Zhao 《Biophysical journal》2010,99(6):1925-1931
To assemble into functional structures, biopolymers search for global minima through their folding potential energy surfaces to find the native conformation. However, this process can be hindered by the presence of kinetic traps. Here, we present a new single-molecule technique, termed laser-assisted single-molecule refolding (LASR), to characterize kinetic traps at the single-molecule level. LASR combines temperature-jump kinetics and single-molecule spectroscopy. We demonstrate the use of LASR to measure single-molecule DNA melting curves with ∼1°C accuracy and to determine the activation barrier of a model kinetic trap. We also show how LASR, in combination with mutagenesis, can be used to estimate the yields of competing pathways, as well as to generate and characterize transient, unstable complexes.  相似文献   

12.

Background

The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem.

Results

To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads.

Conclusions

Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.  相似文献   

13.
This article presents a new, highly sensitive method for the identification of single nucleotide polymorphisms (SNPs) in homogeneous solutions using fluorescently labeled hairpin-structured oligonucleotides (smart probes) and fluorescence single-molecule spectroscopy. While the hairpin probe is closed, fluorescence intensity is quenched due to close contact between the chromophore and several guanosine residues. Upon hybridization to the respective target SNP sequence, contact is lost and the fluorescence intensity increases significantly. High specificity is achieved by blocking sequences containing mismatch with unlabeled oligonucleotides. Time-resolved single-molecule fluorescence spectroscopy enables the detection of individual smart probes passing a small detection volume. This method leads to a subnanomolar sensitivity for this single nucleotide specific DNA assay technique.  相似文献   

14.
15.
The SF1 DNA helicases are multi-domain proteins that can unwind duplex DNA in reactions that are coupled to ATP binding and hydrolysis. Crystal structures of two such helicases, Escherichia coli Rep and Bacillus stearothermophilus PcrA, show that the 2B sub-domain of these proteins can be found in dramatically different orientations (closed versus open) with respect to the remainder of the protein, suggesting that the 2B domain is highly flexible. By systematically using fluorescence resonance energy transfer at the single-molecule level, we have determined both the orientation of an E.coli Rep monomer bound to a 3'-single-stranded-double-stranded (ss/ds) DNA junction in solution, as well as the relative orientation of its 2B sub-domain. To accomplish this, we developed a highly efficient procedure for site-specific fluorescence labeling of Rep and a bio-friendly immobilization scheme, which preserves its activities. Both ensemble and single-molecule experiments were carried out, although the single-molecule experiments proved to be essential here in providing quantitative distance information that could not be obtained by steady-state ensemble measurements. Using distance-constrained triangulation procedures we demonstrate that in solution the 2B sub-domain of a Rep monomer is primarily in the "closed" conformation when bound to a 3'-ss/ds DNA, similar to the orientation observed in the complex of PcrA bound to a 3'-ss/ds DNA. Previous biochemical studies have shown that a Rep monomer bound to such a 3'-ss/ds DNA substrate is unable to unwind the DNA and that a Rep oligomer is required for helicase activity. Therefore, the closed form of Rep bound to a partial duplex DNA appears to be an inhibited form of the enzyme.  相似文献   

16.
17.
18.
Escherichia coli topoisomerases I and III can decatenate double-stranded DNA (dsDNA) molecules containing single-stranded DNA regions or nicks as well as relax negatively supercoiled DNA. Although the proteins share a mechanism of action and have similar structures, they participate in different cellular processes. Whereas topoisomerase III is a more efficient decatenase than topoisomerase I, the opposite is true for DNA relaxation. In order to investigate the differences in the mechanism of these two prototypical type IA topoisomerases, we studied DNA decatenation at the single-molecule level using braids of intact dsDNA and nicked dsDNA with bulges. We found that neither protein decatenates an intact DNA braid. In contrast, both enzymes exhibited robust decatenation activity on DNA braids with a bulge. The experiments reveal that a main difference between the unbraiding mechanisms of these topoisomerases lies in the pauses between decatenation cycles. Shorter pauses for topoisomerase III result in a higher decatenation rate. In addition, topoisomerase III shows a strong dependence on the crossover angle of the DNA strands. These real-time observations reveal the kinetic characteristics of the decatenation mechanism and help explain the differences between their activities.  相似文献   

19.
Force spectroscopy with single bio-molecules   总被引:5,自引:0,他引:5  
For many biological molecules, force is an important functional and structural parameter. With the rapidly growing knowledge about the relation between structure, function, and force, single-molecule force spectroscopy has become a versatile analytical tool for the structural and functional investigation of single bio-molecules in their native environments. Within the past year, detailed insights into binding potentials of receptor ligand pairs, protein folding pathways, molecular motors, DNA mechanics and the functioning of DNA-binding agents (such as proteins and drugs), as well as the function of molecular motors, have been obtained.  相似文献   

20.
The dynamics of single-stranded DNA in an alpha-Hemolysin protein pore was studied at the single-molecule level. The escape time for DNA molecules initially drawn into the pore was measured in the absence of an externally applied electric field. These measurements revealed two well-separated timescales, one of which is surprisingly long (on the order of milliseconds). We characterized the long timescale as being associated with the binding and unbinding of DNA from the pore. We have also found that a transmembrane potential as small as 20 mV strongly biased the escape of DNA from the pore. These experiments have been made possible due to the development of a feedback control system, allowing the rapid modulation of the applied force on individual DNA molecules while inside the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号