首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The interplay between shear stress and cytokines in regulating vascular endothelial function remains largely unexplored. In the present study, the potential role of shear stress in regulating tumor necrosis factor-alpha (TNF-alpha)-induced gene expression in endothelial cells (ECs) was investigated. The TNF-alpha-induced monocyte chemotactic protein-1 (MCP-1) mRNA expressions were significantly attenuated in ECs subjected to a high level of shear stress (20 dynes/cm2) for 4 or 24 h prior to the addition of TNF-alpha in the presence of flow. Less inhibition of TNF-alpha-induced MCP-1 mRNA expression was found in ECs pre-exposed to a low level of shear stress (1.2 dynes/cm2) for 24 h as compared with the cells presheared (pre-exposed to shear stress) for 4 h. Simultaneous exposure of ECs to TNF-alpha and a high or low level of shear stress down-regulated TNF-alpha-induced MCP-1 gene expressions, suggesting that the post-flow condition modulates endothelial responses to cytokine stimulation. Individually or combined, an endothelial nitric oxide synthase (eNOS) inhibitor and a glutathione (GSH) biosynthesis inhibitor had no effect on this shear stress-mediated inhibition. Moreover, in ECs either presheared or remained in a static condition prior to stimulation by TNF-alpha while under shear flow, the ability of TNF-alpha to induce AP-1-DNA binding activity in the nucleus was reduced. Our findings suggest that shear stress plays a protective role in vascular homeostasis by inhibiting endothelial responses to cytokine stimulation.  相似文献   

2.
3.
Orientation of endothelial cells in shear fields in vitro   总被引:7,自引:0,他引:7  
Vascular endothelial cells subjected to fluid shear stress change their shape from polygonal to ellipsoidal and become uniformly oriented with the flow. In order to study the mechanisms of this response, we have measured the relaxation of bovine aortic endothelial cells that were grown on glass coverslips and exposed to fluid shear stress for 72 hours. An image analysis system was developed to quantify the cell shape relaxation that occurs following the cessation of shear stress. This method provides two different quantitative measures of relaxation: the loss of elongated shape by the cells and the change in cell direction with time. After equilibration to a fluid shear stress level of 8 dynes/cm2, cells immersed in static medium relax their shape in about 20 hours. After 72 hours in this static condition, the cell elongation is comparable to that of unstressed control cells but vestiges remain of the original orientation in the flow direction. This relaxation process contributes to our understanding of the response of vascular endothelium to fluid shear stress.  相似文献   

4.
Shear stress, a major hemodynamic force acting on the vessel wall, plays an important role in physiological processes such as cell growth, differentiation, remodelling, metabolism, morphology, and gene expression. We investigated the effect of shear stress on gene expression profiles in co-cultured vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Human aortic ECs were cultured as a confluent monolayer on top of confluent human aortic SMCs, and the EC side of the co-culture was exposed to a laminar shear stress of 12 dyn/cm2 for 4 or 24 h. After shearing, the ECs and SMCs were separated and RNA was extracted from the cells. The RNA samples were labelled and hybridized with cDNA array slides that contained 8694 genes. Statistical analysis showed that shear stress caused the differential expression (p ≤ 0.05) of a total of 1151 genes in ECs and SMCs. In the co-cultured ECs, shear stress caused the up-regulation of 403 genes and down-regulation of 470. In the co-cultured SMCs, shear stress caused the up-regulation of 152 genes and down-regulation of 126 genes. These results provide new information on the gene expression profile and its potential functional consequences in co-cultured ECs and SMCs exposed to a physiological level of laminar shear stress. Although the effects of shear stress on gene expression in monocultured and co-cultured EC are generally similar, the response of some genes to shear stress is opposite between these two types of culture (e.g., ICAM-1 is up-regulated in monoculture and down-regulated in co-culture), which strongly indicates that EC–SMC interactions affect EC responses to shear stress.  相似文献   

5.
Effects of pulsatile flow on cultured vascular endothelial cell morphology   总被引:17,自引:0,他引:17  
Endothelial cells (EC) appear to adapt their morphology and function to the in vivo hemodynamic environment in which they reside. In vitro experiments indicate that similar alterations occur for cultured EC exposed to a laminar steady-state flow-induced shear stress. However, in vivo EC are exposed to a pulsatile flow environment; thus, in this investigation, the influence of pulsatile flow on cell shape and orientation and on actin microfilament localization in confluent bovine aortic endothelial cell (BAEC) monolayers was studied using a 1-Hz nonreversing sinusoidal shear stress of 40 +/- 20 dynes/cm2 (type I), 1-Hz reversing sinusoidal shear stresses of 20 +/- 40 and 10 +/- 15 dynes/cm2 (type II), and 1-Hz oscillatory shear stresses of 0 +/- 20 and 0 +/- 40 dynes/cm2 (type III). The results show that in a type I nonreversing flow, cell shape changed less rapidly, but cells took on a more elongated shape than their steady flow controls long-term. For low-amplitude type II reversing flow, BAECs changed less rapidly in shape and were always less elongated than their steady controls; however, for high amplitude reversal, BAECs did not stay attached for more than 24 hours. For type III oscillatory flows, BAEC cell shape remained polygonal as in static culture and did not exhibit actin stress fibers, such as occurred in all other flows. These results demonstrate that EC can discriminate between different types of pulsatile flow environments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
An apparatus to study the response of cultured endothelium to shear stress   总被引:6,自引:0,他引:6  
An apparatus which has been developed to study the response of cultured endothelial cells to a wide range of shear stress levels is described. Controlled laminar flow through a rectangular tube was used to generate fluid shear stress over a cell-lined coverslip comprising part of one wall of the tube. A finite element method was used to calculate shear stresses corresponding to cell position on the coverslip. Validity of the finite element analysis was demonstrated first by its ability to generate correctly velocity profiles and wall shear stresses for laminar flow in the entrance region between infinitely wide parallel plates (two-dimensional flow). The computer analysis also correctly predicted values for pressure difference between two points in the test region of the apparatus for the range of flow rates used in these experiments. These predictions thus supported the use of such an analysis for three-dimensional flow. This apparatus has been used in a series of experiments to confirm its utility for testing applications. In these studies, endothelial cells were exposed to shear stresses of 60 and 128 dynes/cm2. After 12 hr at 60 dynes/cm2, cells became aligned with their longitudinal axes parallel to the direction of flow. In contrast, cells exposed to 128 dynes/cm2 required 36 hr to achieve a similar reorientation. Interestingly, after 6 hr at 128 dynes/cm2, specimens passed through an intermediate phase in which cells were aligned perpendicular to flow direction. Because of its ease and use and the provided documentation of wall shear stress, this flow chamber should prove to be a valuable tool in endothelial research related to atherosclerosis.  相似文献   

7.
During pregnancy, trophoblasts enter the uterine vasculature and are found in spiral arteries far upstream of uterine capillaries. It is unknown whether trophoblasts reach the spiral arteries by migration within blood vessels against blood flow or by intravasation directly into spiral arteries after interstitial migration. We have developed an in vitro system consisting of early gestation macaque monkey trophoblasts cocultured with uterine endothelial cells and have exposed the cells in a parallel plate flow chamber to physiological levels of shear stress. Videomicroscopy followed by quantitative image analysis revealed that the migratory activity (expressed as average displacement and average migration velocity) of trophoblasts cultured on top of endothelial cells remained unchanged between shear stresses of 1-30 dyne/cm(2) whereas activity of trophoblasts alone increased with increasing shear stress. When the direction of migration was assessed at 1 and 7.5 dyne/cm(2), the extent of migration against and with flow was roughly equal for both trophoblasts alone and cocultured trophoblasts. At shear stress levels of 15 and 30 dyne/cm(2), trophoblasts incubated alone showed a significant decrease in migration against flow and corresponding increased migration in the direction of flow. In contrast, trophoblasts cocultured with uterine endothelial cells maintained the same extent of migration against flow at all shear stress levels. Migration against flow was also maintained when trophoblasts were cultured with endothelial cell-conditioned medium or fixed endothelial cells. The results indicate that factors expressed on the surface of uterine endothelial cells and factors released by endothelial regulate trophoblast migration under flow.  相似文献   

8.
Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward direction has anti-atherogenic effects. At branch points, the complex flow patterns with little net direction are atherogenic. Thus, the direction of shear stress has important physiological and pathophysiological effects on vascular ECs.  相似文献   

9.
Vascular endothelial cells appear to be aligned with the flow in the immediate vicinity of the arterial wall and have a shape which is more ellipsoidal in regions of high shear and more polygonal in regions of low shear stress. In order to study quantitatively the nature of this response, bovine aortic endothelial cells grown on Thermanox plastic coverslips were exposed to shear stress levels of 10, 30, and 85 dynes/cm2 for periods up to 24 hr using a parallel plate flow chamber. A computer-based analysis system was used to quantify the degree of cell elongation with respect to the change in cell angle of orientation and with time. The results show that (i) endothelial cells orient with the flow direction under the influence of shear stress, (ii) the time required for cell alignment with flow direction is somewhat longer than that required for cell elongation, (iii) there is a strong correlation between the degree of alignment and endothelial cell shape, and (iv) endothelial cells become more elongated when exposed to higher shear stresses.  相似文献   

10.
Summary Endothelial cells (ECs) may behave as hemodynamic sensors, translating mechanical information from the blood flow into biochemical signals, which may then be transmitted to underlying smooth muscle cells. The extracellular matrix (ECM), which provides adherence and integrity for the endothelium, may serve an important signaling function in vascular diseases such as atherogenesis, which has been shown to be promoted by low and oscillating shear stresses. In this study, confluent bovine aortic ECs (BAECs) were exposed to an oscillatory shear stress or to a hydrostatic pressure of 40 mmHg for time periods of 12 to 48 h. Parallel control cultures were maintained in static condition. Although ECs exposed to hydrostatic pressure or to oscillatory flow had a polygonal morphology similar to that of control cultures, these cells possessed more numerous central stress fibers and exhibited a partial loss of peripheral bands of actin, in comparison to static cells. In EC cultures exposed to oscillatory flow or hydrostatic pressure, extracellular fibronectin (Fn) fibrils were more numerous than in static cultures. Concomitantly, a dramatic clustering ofα 5β1 Fn receptors and of the focal contact-associated proteins vinculin and talin occurred. Laminin (Ln) and collagen type IV formed a network of thin fibrils in static cultures, which condensed into thicker fibers when BAECs were exposed to oscillatory shear stress or hydrostatic pressure. The ECM-associated levels of Fn and Ln were found to be from 1.5-to 5-fold greater in cultures exposed to oscillatory shear stress or pressure for 12 and 48 h, than in static cultures. The changes in the organization and composition of ECM and focal contacts reported here suggest that ECs exposed to oscillatory shear stress or hydrostatic pressure may have different functional characteristics from cells in static culture, even though ECs in either environment exhibit a similar morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号