首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The shrimp fishery is the most economically important fishery in Mexico. The trawler-based portion of this fishery results in high rates of by-catch. This study quantifies and describes the biodiversity of by-catch associated with trawling in the Bahía de Kino region of Sonora, Mexico. Data were collected from 55 trawls, on six boats, over 14 nights, during November of 2003, 2004, 2006-2009. By-catch rates within trawl samples averaged 85.9% measured by weight. A total of 183 by-catch species were identified during the course of this study, including 97 species of bony fish from 43 families, 19 species of elasmobranchs from 12 families, 66 species of invertebrates from eight phyla, and one species of marine turtle; seven of the documented by-catch species are listed on the IUCN Red List, CITES, or the Mexican NOM-059-ECOL-2010; 35 species documented in the by-catch are also targeted by local artisanal fishers. Some of the species frequently captured as juveniles in the by-catch are economically important to small-scale fishers in the region, and are particularly sensitive to overexploitation due to their life histories. This study highlights the need for further research quantifying the impacts of high levels of by-catch upon small-scale fishing economies in the region and presents strong ecological and economic rationale for by-catch management within the shrimp fishery of the Gulf of California. Site-specific by-catch management plans should be piloted in the Bahía de Kino region to address the growing momentum in national and international fisheries policy regimes toward the reduction of by-catch in shrimp fisheries.  相似文献   

2.
To test whether commercially exploited fishes could regulate populations of crown-of-thorns starfish, laboratory reared juvenile Acanthaster planci were planced on small habitat units in an area of a lagoon where a number of species of fish that feed on benthic invertebrates occurred. Predators were excluded from half the units using wire mesh. In 35 days, losses were low and there was no statistically significant difference between caged and uncaged units. A difference in mortality rate of 1% of individuals per day would have been detected with >85% probability.However, the observed mean difference, the maximum estimate of predatory mortality, was 0.13% of starfish per day. It thus seems unlikely that predation by any large fishes was important in the population dynamics of juvenile A. planci at that site at the time of this experiment. Juvenile starfish were presented to lethrinids in the field at two reefs. Thirteen percent of juvenile A. planci presented at one reef were eaten, but in no presentation did lethrinids eat all the available starfish and those that were eaten were often mouthed and rejected by several fish before being swallowed. No juveniles were taken in a smaller number of trials at the second reef. These results do not favour the hypothesis that predation on juveniles by large fish is important in the population dynamics of A. planci but experiments at more sites will be required before this conclusion can be generalized.  相似文献   

3.
Increased frequency of disturbances and anthropogenic activities are predicted to have a devastating impact on coral reefs that will ultimately change the composition of reef associated fish communities. We reviewed and analysed studies that document the effects of disturbance‐mediated coral loss on coral reef fishes. Meta‐analysis of 17 independent studies revealed that 62% of fish species declined in abundance within 3 years of disturbances that resulted in >10% decline in coral cover. Abundances of species reliant on live coral for food and shelter consistently declined during this time frame, while abundance of some species that feed on invertebrates, algae and/or detritus increased. The response of species, particularly those expected to benefit from the immediate loss of coral, is, however, variable and is attributed to erratic replenishment of stocks, ecological versatility of species and sublethal responses, such as changes in growth, body condition and feeding rates. The diversity of fish communities was found to be negatively and linearly correlated to disturbance‐mediated coral loss. Coral loss >20% typically resulted in a decline in species richness of fish communities, although diversity may initially increase following small declines in coral cover from high coverage. Disturbances that result in an immediate loss of habitat complexity (e.g. severe tropical storms), have a greater impact on fishes from all trophic levels, compared with disturbances that kill corals, but leave the reef framework intact (e.g. coral bleaching and outbreaks of Acanthaster planci). This is most evident among small bodied species and suggests the long‐term consequences of coral loss through coral bleaching and crown‐of‐thorn starfish outbreaks may be much more substantial than the short‐term effects currently documented.  相似文献   

4.
Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world’s small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.  相似文献   

5.
The effectiveness of marine protected areas depends largely on whether people comply with the rules. We quantified temporal changes in benthic composition, reef fish biomass, and fishing effort among marine park zones (including no-take areas) to assess levels of compliance following the 2005 rezoning of the government-controlled Karimunjawa National Park (KNP), Indonesia. Four years after the rezoning awareness of fishing regulations was high amongst local fishers, ranging from 79.5±7.9 (SE) % for spatial restrictions to 97.7±1.2% for bans on the use of poisons. Despite this high awareness and strong compliance with gear restrictions, compliance with spatial restrictions was weak. In the four years following the rezoning reef fish biomass declined across all zones within KNP, with >50% reduction within the no-take Core and Protection Zones. These declines were primarily driven by decreases in the biomass of groups targeted by local fishers; planktivores, herbivores, piscivores, and invertivores. These declines in fish biomass were not driven by changes in habitat quality; coral cover increased in all zones, possibly as a result of a shift in fishing gears from those which can damage reefs (i.e., nets) to those which cause little direct damage (i.e., handlines and spears). Direct observations of fishing activities in 2009 revealed there was limited variation in fishing effort between zones in which fishing was allowed or prohibited. The apparent willingness of the KNP communities to comply with gear restrictions, but not spatial restrictions is difficult to explain and highlights the complexities of the social and economic dynamics that influence the ecological success of marine protected areas. Clearly the increased and high awareness of fishery restrictions following the rezoning is a positive step. The challenge now is to understand and foster the conditions that may facilitate compliance with spatial restrictions within KNP and marine parks worldwide.  相似文献   

6.
Ontogenetic changes in diet and foraging behavior ofThalassoma lutescens were examined in shallow reef habitats around Kuchierabu Island, southern Japan. This species mainly took small benthic invertebrates, including gammarids, polychaetes, sipunculids, chitons, crabs, gastropods, pelecypods and urchins from algal mats. Larger fish consumed correspondingly larger prey, although most of the latter were armored with hard exoskeletons, shells or body plates (e.g., crabs, gastropods, pelecypods and urchins). Such hard parts were crushed with the molar-like, pharyngeal teeth which develop with fish growth, allowing exploitation of such larger, hard-bodied prey. Because the densities of larger prey species were relatively low in the initial habitats foraged, larger fish shifted their foraging attention to rock and coral crevices, where the prey species dwelt in greater numbers, as well as foraging over larger areas. Such behavioral changes maintained high foraging efficiency in larger fish.  相似文献   

7.
Being the interface of sea and land, the coast can be invaded by introduced species coming from either of these two worlds. Recent reviews of coastal invasions emphasize the human-mediated transport of non-indigenous marine plants and invertebrates, forgetting the potential role of invaders of terrestrial origin. By studying the diet of the introduced American mink (Mustela vison) on a rocky shore of southwestern Europe, we draw attention to the potential impact on intertidal communities of exotic species coming from inland. We analysed 199 mink faeces collected in August 1997 and August 1999 in Baiona, a coastal and urban area of northern Spain recently invaded by minks. The diet of the species was based almost exclusively on crabs (45.4% of individual prey) and fish (53.3%). Most crabs were marbled crabs (Pachygrapsus marmoratus) and most fish were adult blennies (Coryphoblennius galerita and Lipophrys pholis). Given its energy requirements (about 1250 kJ/day), a single mink will consume during the month of August approximately 945 blennies and 496 crabs. Although we lack accurate data on mink abundance, a cautious estimation (4 mink/km before dispersal), supported by field observations, suggests that predation in August may reach 3780 blennies and 1984 crabs per km of shoreline. This predation pressure could affect the numbers of blennies and (less probably) crabs, indirectly benefiting the populations of their prey, that is, sessile invertebrates and snails. More field research is needed, but our results suggest that an exotic non-marine top predator such as the American mink could affect intertidal communities in Eurasia.  相似文献   

8.
The worldwide depletion of major fish stocks through intensive industrial fishing is thought to have profoundly altered the trophic structure of marine ecosystems. Here we assess changes in the trophic structure of the English Channel marine ecosystem using a 90-year time-series (1920–2010) of commercial fishery landings. Our analysis was based on estimates of the mean trophic level (mTL) of annual landings and the Fishing-in-Balance index (FiB). Food webs of the Channel ecosystem have been altered, as shown by a significant decline in the mTL of fishery landings whilst increases in the FiB index suggest increased fishing effort and fishery expansion. Large, high trophic level species (e.g. spurdog, cod, ling) have been increasingly replaced by smaller, low trophic level fish (e.g. small spotted catsharks) and invertebrates (e.g. scallops, crabs and lobster). Declining trophic levels in fisheries catches have occurred worldwide, with fish catches progressively being replaced by invertebrates. We argue that a network of fisheries closures would help rebalance the trophic status of the Channel and allow regeneration of marine ecosystems.  相似文献   

9.
We compared the community structure of reef fish over different physical complexities in 12 study zones of Bahía Honda, Gulf of Chiriquí (BH-GCH), Tropical Eastern Pacific (TEP), Panama, aiming at an analysis of the importance of the physical structure provided by corals, rocks and benthic sessile organisms. This was the first region that emerged in the Isthmus of Panama; it exhibits the oldest benthic fauna and has constant conditions in terms of temperature and salinity. Two hundred and eighty-eight visual fish censuses were conducted on 48 benthic transects from February to July 2003. One hundred and twenty-six fish species of 44 families were found. Plankton feeding pomacentrids and labrids along with haemulids that feed on mobile invertebrates were the most abundant, particularly in shallow areas. Fourteen species showed size-segregations between zones, suggesting ontogenetic migrations (smaller fishes in shallow high-complexity zones, larger-sized fishes in deeper habitats). Highly mobile and site-attached genera were abundant in most shallow, wave-exposed zones particularly on exposed rocky substrates. Planktivores were the most abundant, followed by carnivores, feeders on mobile invertebrate and piscivores. Herbivores and feeders on sessile invertebrate were lower in abundance. Species richness exceeds that of any other studied region close to the mainland in the TEP and correlates with substrate diversity, increasing size-heterogeneity of holes and structural complexity. Species diversity increases with habitat complexity and benthic diversity. It seems that water current strength, tides and waves which select for swimming, play an important role in the community organization. The study region has been proposed as a refuge-centre in the TEP, where reef fishes that evolved on coral reefs have shifted their distribution onto rocky reef habitats.  相似文献   

10.
Fisheries exploitation provides the opportunity to examine the ecosystem‐scale biodiversity consequences of predator removal. We document predatory reef fish densities, coral‐eating starfish densities and coral reef structure along a 13‐island gradient of subsistence exploitation in Fiji. Along the fishing intensity gradient, predator densities declined by 61% and starfish densities increased by three orders of magnitude. Reef‐building corals and coralline algae declined by 35% and were replaced by non‐reef building taxa (mainly filamentous algae), as a result of starfish predation. Starfish populations exhibited thresholds and Allee‐type dynamics: population growth was negative under light fishing intensities and high predator densities, and positive on islands with higher fishing intensities and low predator densities. These results suggest the depletion of functionally important consumer species by exploitation can indirectly influence coral reef ecosystem structure and function at the scale of islands.  相似文献   

11.
A new fishery has been developing in the Amazon that uses dolphin and caiman species as bait to catch piracatinga (Calophysus macropterus), having thus the potential to cause adverse food‐web impacts; however a lack of basic understanding of this fishery is a limitation to the necessary management action. Interviews with fishers and analyses of fishing records in Brazil were used for the study, including harvest methods, types of baits used, commercialization chains, and the rate of increase of piracatinga yields in recent years. Piracatinga fishers are subsistence fishers who harvest piracatinga as a means to alleviate economic constraints when the catch of other species is not profitable or banned due to (reproductive) closed seasons. Harvesting is done with wooden and nylon crates and cages in which whole or pieces of caimans and dolphins are placed to attract the piracatinga, entrapping them. The piracatinga are then sold to intermediate sellers for resale to a few large fish freezing and processing plants for export to Colombia. Annual piracatinga yields in the study area increased at an average rate of 446.5% per year, from 865 kg in 2003 to 23 176 kg in 2009. Because dolphins and caimans comprise various endangered species, the Brazilian government has recently implemented a ban on this fishery, which can be enforced at fish freezing and processing plants. However, there is a danger that such enforcement will lead to the development of a geographically dispersed chain of commercialization and export, such as currently exists for other species including caimans, which would be impossible to control.  相似文献   

12.
Many comparisons have been made between sanctuary (no-fishing) and fished areas, where fishing pressure is exerted by artisanal or commercial fishers, but few have examined the effect of recreational fishing on fish assemblages in coral reef habitats. In this study, we compared assemblages of targeted fish from coral reef habitats in sanctuary (no-fishing) and recreationally fished zones of a marine protected area (MPA). Surface visual census (SVC) transects were conducted two times, at three regions, to compare the composition of predatory fish assemblages and the abundance, biomass, and size of the most commonly targeted fish. Baited remote underwater video (BRUV) was used to make relative counts of fish between zones. We also measured benthic cover and rugosity, which may influence fish assemblages. Analysis of similarity (ANOSIM) revealed significant differences in the composition of fish families/genera targeted by fishers (Lethrinidae, Lutjanidae, Haemulidae, Serranidae, and the genus Choerodon of the family Labridae) in terms of biomass (P<0.01) and abundance (P<0.05). The most consistent trends were recorded for biomass and this was supported by clustering of replicates in nonmetric multidimensional scaling (nMDS) ordinations. Similarity percentages (SIMPER) analysis indicated that the family Lethrinidae accounted for 73% (as abundance), and up to 69% (as biomass), of the dissimilarity between zones. Three-factor ANOVA highlighted significantly greater biomass, size, and abundance of legal-sized lethrinids (the most targeted family in the region) in sanctuary zones, but no differences in other families/genera. Results of BRUV supported SVC with greater relative counts of lethrinids (P<0.01) in sanctuaries, but no significant differences for other families. Cover of Acropora coral and hard substrate differed between zones at some regions but differences were inconsistent. There were no significant differences in algal cover or rugosity between zones. Given the inconsistency in benthic cover, the similarity of rugosity between zones, the consistently greater biomass of lethrinids in sanctuaries, and the abundance of large lethrinids in sanctuaries, the cessation of fishing in sanctuary zones appears responsible for observed differences in the populations of these fish. These results demonstrate that recreational fishing pressure may be sufficient to deplete fish populations below that of adjacent protected areas and that the effect of recreational fishing in coral reef habitats may be greater than previously thought.  相似文献   

13.
Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65–72%) as opposed to inshore vegetated habitats (28–35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.  相似文献   

14.
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.  相似文献   

15.

Background

Climate change is altering climate patterns, mainly increasing the frequency and intensity of extreme events with potentially serious impacts on natural resources and the people that use them. Adapting to such impacts will require the integration of scientific and local (folk) knowledge, especially the first-hand experiences and perceptions of resource users such as fishers. In this study, we identify how commercial riverine fishers in the Amazon remember extreme climatic events (flood and drought) and how they face the consequences of extreme events on fish availability.

Methods

Data were collected from the main Manaus fishery harbor between June and October of 2013. Semi-structured questionnaires and a historical timeline technique were used to gather data from artisanal commercial fishers. Fishers’ knowledge of extreme climate events was assessed by their “cultural consensus” for identification of event years and perceived impacts. Fishers’ responses were also compared to hydrological data to test their similarity.

Results

There was a high level of cultural consensus among fishers about extreme events years. They were able to identify four consecutive unusual droughts, between 2009 and 2012. Elevated levels of fish mortality and decreases in the fishery were perceived as consequences of the drought events, as well as, a reduction in fish size, and disappearance of some species. Extreme flood events were associated with greater difficulties accessing fishing grounds.

Conclusions

Extreme climatic events (floods and droughts) were remembered, and the recent increase in their intensity and frequency was also perceived. Moreover, extreme climate event (mainly droughts) impacts on fishery resources were also observed. Such information is potentially valuable for educational programs to further improve adaptation of local Amazonian fishing communities to future climate change, e.g. increasing local ecological knowledge using learning material based on their perception.
  相似文献   

16.
Bolbometopon muricatum, the largest species of parrotfish, is a functionally important species that is characterised by the formation of aggregations for foraging, reproductive, and sleeping behaviours. Aggregations are restricted to shallow reef habitats, the locations of which are often known to local fishers. Bolbometopon muricatum fisheries are therefore vulnerable to overfishing and are likely to exhibit hyperstability, the maintenance of high catch per unit effort (CPUE) while population abundance declines. In this study, we provide a clear demonstration of hyperstable dynamics in a commercial B. muricatum fishery in Isabel Province, Solomon Islands. Initially, we used participatory mapping to demarcate the Kia fishing grounds into nine zones that had experienced different historic levels of fishing pressure. We then conducted comprehensive underwater visual census (UVC) and CPUE surveys across these zones over a 21-month period in 2012–2013. The individual sites for replicate UVC surveys were selected using a generalised random tessellation stratified variable probability design, while CPUE surveys involved trained provincial fisheries officers and local spearfishers. A comparison of fishery-independent abundance data and fishery-dependent CPUE data indicate extreme hyperstability, with CPUE maintained as B. muricatum abundance declines towards zero. Hyperstability may explain the sudden collapses of many B. muricatum spear fisheries across the Pacific and highlights the limitations of using data-poor fisheries assessment methods to evaluate the status of commercially valuable coral reef fishes that form predicable aggregations.  相似文献   

17.
The diets of the most conspicuous reef‐fish species from northern Patagonia, the carnivorous species Pseudopercis semifasciata, Acanthistius patachonicus, Pinguipes brasilianus and Sebastes oculatus were studied. Pinguipes brasilianus had the narrowest diet and most specialized feeding strategy, preying mostly on reef‐dwelling organisms such as sea urchins, limpets, bivalves, crabs and polychaetes. The diet of A. patachonicus was characterized by the presence of reef and soft‐bottom benthic organisms, mainly polychaetes, crabs and fishes. Pseudopercis semifasciata showed the broadest spectrum of prey items, preying upon reef, soft‐bottom and transient organism (mainly fishes, cephalopods and crabs). All S. oculatus guts were empty, but stable‐isotope analyses suggested that this species consumed small fishes and crabs. In general, P. brasilianus depended on local prey populations and ate different reef‐dwelling prey than the other species. Pseudopercis semifasciata, A. patachonicus and probably S. oculatus, however, had overlapping trophic niches and consumed resources from adjacent environments. The latter probably reduces the importance of food as a limiting resource for these reef‐fish populations, facilitating their coexistence in spite of their high trophic overlap.  相似文献   

18.

Background

Fishery management has historically been an inexact and reactionary discipline, often taking action only after a critical stock suffers overfishing or collapse. The invertebrate ornamental fishery in the State of Florida, with increasing catches over a more diverse array of species, is poised for collapse. Current management is static and the lack of an adaptive strategy will not allow for adequate responses associated with managing this multi-species fishery. The last decade has seen aquarium hobbyists shift their display preference from fish-only tanks to miniature reef ecosystems that include many invertebrate species, creating increased demand without proper oversight. The once small ornamental fishery has become an invertebrate-dominated major industry supplying five continents.

Methodology/Principal Findings

Here, we analyzed the Florida Marine Life Fishery (FLML) landing data from 1994 to 2007 for all invertebrate species. The data were organized to reflect both ecosystem purpose (in the wild) and ecosystem services (commodities) for each reported species to address the following question: Are ornamental invertebrates being exploited for their fundamental ecosystem services and economic value at the expense of reef resilience? We found that 9 million individuals were collected in 2007, 6 million of which were grazers.

Conclusions/Significance

The number of grazers now exceeds, by two-fold, the number of specimens collected for curio and ornamental purposes altogether, representing a major categorical shift. In general, landings have increased 10-fold since 1994, though the number of licenses has been dramatically reduced. Thus, despite current management strategies, the FLML Fishery appears to be crawling to collapse.  相似文献   

19.
吴忠鑫  张磊  张秀梅  张沛东  李文涛 《生态学报》2012,32(21):6737-6746
根据2009年5月份至2010年2月份于山东荣成俚岛人工鱼礁区和对照区4个季度月的游泳动物及同步的环境调查数据,采用Margalef种类丰富度指数,Shannon-Wiener多样性指数,Pielou均匀度指数分析了鱼礁区游泳动物群落组成和物种多样性的时空分布特征,运用梯度分析法对调查区域游泳动物群落格局与环境因子进行排序分析,结合蒙特卡罗检验确定影响鱼礁区游泳动物群落结构的控制因子。调查期间共捕获游泳动物18种,隶属于8目15科,优势种为许氏平鲉(Sebastes schlegeli)、大泷六线鱼(Hexagrammos otakii)和斑头六线鱼(Hexagrammos agrammus),其中许氏平鲉在渔获量组成中占绝对优势(41%)。鱼礁区游泳动物的渔获种类数和渔获量高于各自对照区,但差异不显著(P>0.05), 季度月平均CPUE最高值出现在近岸礁区,达到830.24 g ·网-1·d-1。群落组成特征值上,春秋季的参数值最大,鱼礁区与对照区间并无显著差异(P>0.05)。聚类分析表明,春季、夏季和冬季均是季度月内不同区域的样方相似性较高,而秋季的远岸礁区及其对照区样方与春季各区域样方的相似性高于秋季近岸礁区及其对照区。RDA分析表明,水温对游泳动物群落组成变化的解释量为37.1%,是主要的解释因子(P=0.002)。水温和水深等环境因子主导了俚岛人工鱼礁区游泳动物群落结构的时空变化。  相似文献   

20.
By the late 1980's, humans were removing 76 million metric tons (MMT) of marine fishes annually. The potential sustainable catch is somewhere between 69 and 96 MMT. As a result, major fisheries have collapsed or are in danger of collapsing. Many of these species school. Schooling is effective against gape-limited predators because of dilution and confusion. However, larger predators may exploit schooling behavior to sequester and consume a non-trivial fraction of the group. This is the strategy of fishers. Both gear and fisher behavior have evolved to take advantage of the seemingly canalized response of schooling species. This paper examines the ways artisanal and western fishers have exploited knowledge of the behavior and ecology of schooling species to aid in fish capture. Topics include object association; use of light, sound, and chemicals; perceived barriers; predator-prey and other trophic interactions; inherent cyclical rhythms such as diel migration, lunar spawning, and seasonality; and correlations with the physical environment. Exploiting schooling allows fishers to increase efficiency through knowledge of when and where fish aggregate, or by extending the conditions under which aggregation occurs. However, knowledge of behavioral ecology can also be used to conserve schooling stocks. Gear selectivity, group size and population dynamics, and fisher efficiency are all potential areas of integration between behavioral ecology and fishery management. However, no amount of integration of behavioral ecology into fishery management will have the intended conservation effects if fishing effort is not limited to at least numerical if not behaviorally-sustainable levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号