首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. H. Wang    Y. T. Lin    J. C. Shiao    C. F. You    W. N. Tzeng 《Journal of fish biology》2009,75(6):1173-1193
The elements Na, Mg, Mn, Ca, Sr and Ba in otoliths of southern bluefin tuna Thunnus maccoyii , collected from their feeding ground in the central Indian Ocean and spawning ground between southern Java and north-western Australia were measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and compared among sampling locations and developmental stages. The Na, Mg and Mn to Ca concentration ratios were significantly higher at the larval stage than at the adult stage, and the ratio reached a peak at the first inflection point of the otolith, mean ± s.d. 43·3 ± 4·9 days after hatching and decreased sharply to a low level thereafter. The temporal change of the elements:Ca ratios in the first inflection point corresponded to the life stage transition from larva to juvenile, indicating that the uptake rate of elements from ambient waters was significantly influenced by the ontogenetic change in the fish. The elemental composition at the otolith edge differed significantly in sub-adults on the feeding grounds and adults on the spawning grounds. Thus, the otolith elemental composition can be used as a biological tracer to study the time of the ontogenetic shift and to reconstruct the past migratory environmental history of T. maccoyii . In addition, the elemental composition of the otolith core of the adult was similar between feeding and spawning grounds, indicating that the fish in the Indian Ocean had the same larval origin, which is consistent with the single spawning population hypothesis.  相似文献   

2.
Trace element concentrations of otoliths from larval herring Clupea harengus collected from known spawning beds in the Celtic and Irish Seas, were investigated using laser ablation ICP-MS and compared with concentrations in the larval cores of juvenile otoliths from the same populations and year class. A range of elements (Mg, Zn, Sr, Ba and Pb) was detectable in early larval otoliths (20–40 µm diameter). Larval otolith concentrations exceeded the larval core concentrations of juvenile otoliths and also the concentrations reported in the literature, for Mg, Zn, Ba and Pb, indicating that the measurement of elements in larval otoliths was severely affected by post-mortem contamination, most likely due to adherence of tissue and endolymph residue on the otolith surface. Comparison of otolith composition between larvae from two freezing treatments showed that contamination from Mg and Zn was more serious in otoliths that had remained in frozen larvae for prolonged periods. Larval populations from the two seas showed significant differences in otolith Sr concentrations, which were consistent over two sampling years. Similar differences were seen in the corresponding juvenile populations. The results show that while early larval otoliths are extremely susceptible post-mortem contamination, Sr concentrations can be reliably measured using laser ablation ICP-MS and for this element, the detection of region specific differences is possible.  相似文献   

3.
Spatial variation in the chemistry (Mg, Mn, Sr and Ba) of recently deposited otolith material (last 20–30 days of life) was compared between two demersal fish species; snapper Pagrus auratus (Sparidae) and sand flathead Platycephalus bassensis (Platycephalidae), that were collected simultaneously at 12 sites across three bays in Victoria, south-eastern Australia. Otolith chemistry was also compared with ambient water chemistry and among three sampling positions adjacent to the proximal otolith margin. For both species, variation in otolith chemistry among bays was significant for Ba, Mn and Sr; however, differences among bays were only similar between species for Ba and Mn. Only Ba showed significant variation at the site level. Across the 12 sites, mean otolith Ba levels were significantly positively correlated between species. Further, although incorporation rates differed, mean ambient Ba levels for both species were positively correlated with ambient Ba levels. Spatial variation in multi-element otolith chemistry was also broadly similar between species and with multi-element water chemistry. Partition coefficients clearly indicated species-specific incorporation of elements into otoliths. Mg and Mn were consistently higher in snapper than sand flathead otoliths (mean ±s .d ., Mg snapper 22·1 ± 3·8 and sand flathead 9·9 ± 1·5 μg g−1, Mn snapper 4·4 ± 2·6 and sand flathead 0·5 ± 0·3 μg g−1), Sr was generally higher in sand flathead otoliths (sand flathead 1570 ± 235 and snapper 1346 ± 104 μg g−1) and Ba was generally higher in snapper otoliths (snapper 12·1 ± 12·8 and sand flathead 1·8 ± 1·4 μg g−1). For both species, Mg and Mn were higher in the faster accreting regions of the otolith margin, Sr was lower in the slower accreting region and Ba showed negligible variation among the three sampling regions. This pattern was consistent with the higher Mg and Mn, and generally lower Sr observed in the faster accreting snapper otoliths. It is hypothesized that the differences between species in the incorporation of these elements may be at least partly related to differences in metabolic and otolith accretion rate. Although rates of elemental incorporation into otoliths appear species specific, for elements such as Ba where incorporation appears consistently related to ambient concentrations, spatial variation in otolith chemistry should show similarity among co-occurring species.  相似文献   

4.
To test the hypothesis that elemental composition of otoliths (sagittae) could be influenced by differences in natural prey type, young‐of‐the‐year bluefish Pomatomus saltatrix were captured immediately after their migration from oceanic waters into mid‐Atlantic Bight estuaries and fed either shrimp, Crangon septemspinosa and Palaemonetes spp. or fish Menidia menidia under similar temperature and salinity regimes in two separate 60 day experiments. Unlimited rations of fish and shrimp prey were provided in the first experiment which led to differences in bluefish growth rate between the two prey treatments; fish prey was limited in the second experiment to ensure that growth rates of bluefish in the two prey treatments were similar. Concentrations of seven elements in bluefish otoliths were determined using solution‐based inductively coupled plasma mass spectrometry (ICPMS). There was no significant effect of diet on five of the seven elements examined (Na, Mg, K, Ca and Mn). The levels of Sr and Ba in the otoliths of shrimp‐fed bluefish, however, were significantly higher than fish‐fed bluefish in both experiments. Concentrations of Ba in shrimp‐fed bluefish otoliths were double that found in fish‐fed bluefish. The results suggest that diet can explain some of the variation in otolith chemistry previously attributed to physical and chemical properties of the water.  相似文献   

5.
Sagittal otoliths of Coryphaenoides rupestris (roundnose grenadier), Helicolenus dactylopterus (bluemouth) and Merluccius merluccius (European hake) were collected using a variety of handling and storage treatments and their elemental composition was examined using inductively coupled plasma mass spectrometry. Some differences between element concentrations were identified between the control and treatment groups, most notably for the element Li. For H. dactylopterus and M. merluccius , Li concentrations were significantly higher in the otoliths extracted with metal forceps and stored in paper envelopes (treatment), compared to those from the same fishes that had been extracted using plastic forceps and stored in polyethylene vials (control). Lower concentrations of Ba and Cr were found in M. merluccius otoliths extracted from fish that had been stored frozen. The presence or absence of elemental concentrations above the instrumental limits of detection was noted, but no significant differences were identified between otolith pairs for any of the treatments. The differences between otolith pairs attributable to storage and handling effects are small compared to between‐area differences.  相似文献   

6.
This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium (86Sr) and barium (137Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish.  相似文献   

7.
Because trace elements of otoliths are considered a natural marker capable of recognizing the chemical composition of ambient water and fish migration history, these elements could be potentially used to analyse the movement of reproductive (R) and non-reproductive (NR) mature-sized fish. Supposedly, it is not essential for NR individuals to migrate to rivers for spawning because they do not have developed gonads. To investigate the potential differences in migration history between female R and NR kutum, Rutilus frisii, in the southwest waters of the Caspian Sea, the ratios of Sr, Ba, Mg, Na, K and P to Ca in otoliths (from the core to the edge) were examined using laser ablation–inductively coupled plasma–mass spectrometry. In NR fish, a significant increase in Sr:Ca ratio in the otoliths' growth rings, likely due to greater seawater residency, and an increase in Ba:Ca ratio in the last two rings were observed. Increased Ba:Ca ratio could be due to the movement of NR mature-sized fish to the coastal zones for foraging. Seasonal physiological factors such as gonad maturation and spawning activity are more likely to be involved in differences in the other elemental ratios (Mg, Na, K and P). These results suggest that microchemical analyses of growth rings of otolith can be used as a valuable tool for better understanding the movement pattern of different types of adult fish, which could be completed with data from other methods like tagging.  相似文献   

8.
The trace element composition of young‐of‐the‐year (YOY) juvenile swordfish Xiphias gladius sagittal otoliths were analysed as a preliminary test of the value of otolith elemental fingerprints for determining swordfish nursery ground origins in the central Pacific Ocean. A suite of five elements (Mg, Zn, Sr, Ba and Pb) was assayed with isotope dilution ICP‐MS; all elemental concentrations were roughly comparable to otoliths of other marine fishes. Multivariate analyses of elemental fingerprints based on Ba and Sr revealed differences between sample sites, and the magnitude of the differences increased with latitudinal separation. With more comprehensive sampling of nursery grounds, it should be possible to identify origin of nursery ground for adult swordfish by analysing the YOY juvenile portion of the sagittal otolith.  相似文献   

9.
The chemical composition of common carp Cyprinus carpio asteriscus (vaterite) and lapillus (aragonite) otoliths from the same individual and reflecting the same growth period was measured to (1) determine whether there are differences in the uptake of trace metals (Mg:Ca, Mn:Ca, Sr:Ca and Ba:Ca ) and Sr isotope ratios (87Sr:86Sr) in co‐precipitating lapilli and asterisci and (2) compare the ability of multi‐element and isotopic signatures from lapilli, asterisci and both otolith types combined to discriminate C. carpio populations over a large spatial scale within a river basin. Depth profile analyses at the otolith edge using laser‐ablation inductively coupled plasma mass spectrometry showed that asterisci were enriched in Mg and Mn and depleted in Sr and Ba relative to lapilli, whilst 87Sr:86Sr values were nearly identical in both otolith types. Significant spatial differences among capture locations were found when all trace element and Sr isotope ratio data were aggregated into a multi‐element and isotopic signature, regardless of which otolith type was used or if they were used in combination. Discriminatory power was enhanced, however, when data for both otolith types were combined, suggesting that analysis of multiple otolith types may be useful for studies attempting to delineate C. carpio populations at finer spatial or temporal scales.  相似文献   

10.
Trace element analysis or “elemental fingerprinting” is widely used in stock structure analyses. Postmortem contamination of bony structures can confound the results of microconstituent studies or introduce an additional source of noise to the data, thus reducing the ability of the technique to detect real variation in trace element concentrations. Despite the potential for postmortem contamination during sample preparation, the effectiveness of the procedures used to remove potential contaminants from sectioned otoliths and other calcareous structures prior to laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) has not previously been addressed. Otoliths and dorsal spine sections of albacore tuna (Thunnus alalunga) collected from the North East Atlantic Ocean and the Mediterranean Sea were deliberately contaminated prior to analysis of trace element composition using LA ICP-MS. The effectiveness of three cleaning treatments (rinsing in ultrapure water, 30% hydrogen peroxide and ultrapure 5% nitric acid) at removing this postmortem contamination were compared. Magnesium and strontium were relatively robust to postmortem effects when exposed to contamination at concentrations of 50 ppm and 200 ppm respectively. Soaking in a solution containing Mn, Cs and Ba (50 ppm) caused a marked increase in the detected concentration of each element in both structures. Translucent bands in both structures were more susceptible to contamination. Rinsing in ultrapure water or hydrogen peroxide was not effective at removing Mn, Cs and Ba contamination from either calcareous structure. Washing the otoliths and spines in nitric acid successfully removed postmortem contaminants.The removal of otoliths from tuna damages the appearance of the fish and has an adverse effect on market value. However spines are easily removed, do not affect the appearance or value of the fish and are the most commonly used structure for age determination. A weak but significant correlation was observed between Ba in opaque zones in otoliths and dorsal spines. All other spine to otolith correlations were not significant. The results do not provide support for the use of spines as an alternative to otoliths in trace elemental analyses.  相似文献   

11.
Partial migration occurs in many taxa and ecosystems and may confer survival benefits. Here, we use otolith chemistry data to determine whether fish from a large estuarine system were resident or migratory, and then examine whether contingents display differences in modelled growth based on changes in width of otolith growth increments. Sixty-three per cent of fish were resident based on Ba : Ca of otoliths, with the remainder categorized as migratory, with both contingents distributed across most age/size classes and both sexes, suggesting population-level bet hedging. Migrant fish were in slightly better condition than resident fish based on Fulton''s K condition index. Migration type (resident versus migratory) was 56 times more likely to explain variation in growth than a model just incorporating year- and age-related growth trends. While average growth only varied slightly between resident and migratory fish, year-to-year variation was significant. Such dynamism in growth rates likely drives persistence of both life-history types. The complex relationships in growth between contingents suggest that management of species exhibiting partial migration is challenging, especially in a world subject to a changing climate.  相似文献   

12.
Solution-based inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine if Stegastes nigricans collected from 15 sites in French Polynesia could be distinguished by the trace element composition of their otoliths. A total of 293 adults were collected by spearing and their otoliths were analysed. We found that elemental signatures differed significantly among sites within and between the islands of Tahiti and Moorea (p<0.001), primarily due to variation in concentrations of the elements Ba, Ca, Li, Mg, Mn, Na, Sr and Y. The otoliths of fish collected within Papeete Harbour in Tahiti had distinctive elemental signatures characterised by relatively high concentrations of Mn. Otoliths of these fish could be distinguished from others that were collected only a small distance (200 m) from the harbour. This is the first time that differences in chemical composition of otoliths have been reported at such small spatial scales and this trait may prove useful for the studies of connectivity of populations at within reef scales.  相似文献   

13.
There is an increasing desire for researchers to use the elemental concentrations in fish otoliths to reconstruct environmental histories of fish. These reconstructions may be plausible due to the unique incorporation of elements into discrete layers of otolith material that correspond to daily growth, and because environmental variables of temperature, salinity, and water chemistry can influence otolith chemistry. However, it is essential to establish exactly how temperature, salinity, and the ambient concentration of elements influence otolith chemistry in order to interpret environmental histories of fish. Using a controlled laboratory experiment we tested the relative and interactive effects of temperature, salinity, and ambient concentration of strontium (Sr) and barium (Ba) on the resulting concentration of Sr and Ba in otoliths of black bream Acanthopagrus butcheri (Munro 1949). Salinity and concentration, and temperature and concentration interacted to affect the elemental concentration of Sr:Ca and Ba:Ca in otoliths. Regression analysis revealed that temperature and ambient concentration contributed most to the trend in otolith chemistry for both elements. Importantly, this is the first experiment to combine three environmental variables and assess their effect on otolith chemistry. Based on these results, it should be possible to use changes in the elemental concentration in otoliths to better reconstruct previous environments of temperature, salinity, and ambient water chemistry, which is especially useful when determining occupancy in habitats such as estuaries that display variable environmental characteristics.  相似文献   

14.
Much has been revealed about fish migration, including diadromous behaviour, through the use of otolith chemistry. Manipulative experiments assist with unravelling information on otolith chemical composition and incorporation thereby answering specific questions on diadromous movements. In this study, a laboratory-based experiment was used to determine the relative and interactive effects of salinity and water temperature on the composition of three key elements (Sr, Ba and Mg) within the otolith of a catadromous fish, Percalates novemaculeata, endemic to south-eastern Australia. Otolith incorporation of Sr and Ba was positively related to ambient water concentration, whereas Mg incorporation was not. Sr and Ba increased and decreased significantly across salinity gradients, respectively, with minor positive effects of temperature also being detected. Salinity and temperature interacted to significantly affect the elemental concentration ratios for Ba: Ca in otoliths. Discrimination between fresh water and marine environments shows promise for interpreting P. novemaculeata residency based on these elements alone. However, deciphering finer scale movements within estuarine environments may be difficult. Our data highlights the importance of multifactorial validation experiments and suggests complementary use of multiple approaches for unravelling species-specific patterns of fish movement and habitat use.  相似文献   

15.
A sample of 20 metamorphosing conger eel Conger conger leptocephali were collected from the Minho River, Portugal, in February 1999 and their sagittal otoliths were analysed by scanning electron microscopy. Four different etching agents were applied along both sagittal and frontal sections during otolith preparation to examine the microstructural growth in this species. Otolith growth increments were visible throughout the increment countable zone using all four treatments, but a permanent peripheral diffuse zone, where the daily increments were unclear, appeared on all otoliths, preventing accurate age estimation. To understand more about the nature of the diffuse zone, otoliths of 10 other metamorphosing leptocephali reared in aquaria were marked by immersion in tetracycline hydrochloride. The distance between the fluorescent marks and otolith edge, measured over a fixed period of time, was used to estimate the otolith growth rate. The application of this technique led to an anomalously high estimated otolith growth rate, probably as a result of the capture, marking and handling stress.  相似文献   

16.
Two techniques have been developed to examine the three-dimensional internal structure of otoliths. In the first, otoliths were sectioned serially, images were digitized, and the otolith was reconstructed as a computer model. In the second method growth increments were marked in vivo during their formation by immersing the fish in a fluorescent dye, and then the internal structure of the otolith visualized using laser cytometry. The results are useful for evaluating the potential for bias in otolith measurements and for determining the sectional plane with the least bias.  相似文献   

17.
This study used otolith microchemistry to evaluate whether the moray eel Gymnothorax chilospilus uses different habitats throughout its life (mainly juvenile and adult phases). Of the most informative trace elements within otoliths (the twelve isotopes 23Na, 25Mg, 43Ca, 55Mn, 59Co, 60Ni, 63Cu, 66Zn, 86Sr, 111Cd, 138Ba and 208Pb) only three ratios of Ca (Na:Ca, Sr:Ca and Ba:Ca) were informative and therefore used in a multivariate regression-tree analysis. Using a multivariate partitioning, three main phases were described from profiles, including the larval life phase (leptocephali), the intermediate phase (longest section between the larval life phase and the terminal phase) and the terminal phase (final section i.e., the most recent months preceding the death of fish). According to concentrations of the three ratios to Ca, G. chilospilus can be separated into three groups during their larval life stage (very different in Sr and Na), four groups during the intermediate phase (few differences in Sr and Na) and three groups during the terminal phase (differences in Sr), illustrating that G. chilospilus inhabit different habitats during these three phases. Our results showed that the leptocephali encountered different oceanic water masses with fluctuating Sr:Ca ratios during the early larval phase. During the intermediate phase (main part of their life-span), they lived in lagoonal waters such as fringing reefs or reef flats of lagoonal islets, characterized by a lower Sr:Ca ratio. During the latter part of their life, approximately one third of G. chilospilus encountered more oceanic waters close to or at barrier reefs, suggesting possible movements of these fish along a coast-to-ocean gradient.  相似文献   

18.
Otolith chemistry was used to study the stock structure of Channa punctata collected from the River Ganga and its tributaries, the rivers Yamuna and Gomti. Whole sagittal otoliths were subjected to acid digestion to analyse the trace elements (Ca, Na, Mg, Sr, Mn, Ba, Fe and K) using ICP‐AES. Data were subjected to appropriate statistical treatments, such as univariate anova , ancova , manova and DFA in order to delineate the fish stock(s) accurately. Mean concentrations of Ca, Mg, Sr, Mn, Ba, Fe and K in the otoliths of the fish from selected sites of the different rivers were significantly (P < 0.001) different from each other, while the mean Na concentrations were comparable (P > 0.05). In classification statistics, 96% of individuals were correctly classified to their original groups. The scatter plot of DF‐I vs DF‐II depicted the presence of different stocks in the River Ganga and its selected tributaries. Variations in the microchemistry of the otoliths showed the presence of four C. punctata stocks in the three selected rivers.  相似文献   

19.
 We examined the utility of otolith minor and trace element chemistry, assayed with inductively coupled plasma mass spectrometry (ICP-MS), as a means of delineating population structure in the Nassau grouper (Epinephelus striatus). We characterized the elemental composition of otoliths collected in 1993 from three locations in Exuma Sound, Bahamas and from Glover Reef, Belize in 1995. A single location in Exuma Sound was sampled in 1994 to test temporal variability in otolith composition. Five elements (Ca, Zn, Sr, Ba and Pb) were routinely detected, at levels significantly above background, by solution-based ICP-MS. Results from analysis of variance of elemental data, expressed as a ratio to Ca, indicated that there were no significant differences among the Exuma locations for any element, but significant variability was found between Glover Reef and the pooled Exuma localities for Zn/Ca, Sr/Ca and Ba/Ca ratios. Significant inter-annual differences at one Exuma Sound location was restricted to Ba/Ca ratios. Discriminant function analysis correctly classified 86% and 95% of the Belize and pooled Exuma sites, respectively. Otoliths from Belize were characterized by low Zn/Ca and high Ba/Ca and Pb/Ca ratios compared to otoliths from fish collected in Exuma Sound. Although differences in Ba levels may be related to upwelling at Glover Reef, more data are needed to definitely link otolith composition with regional differences in water chemistry. Accepted: 15 February 1999  相似文献   

20.
Vaterite otoliths were sampled from two reared populations (Celtic and Clyde Seas) of juvenile herring Clupea harengus. The crystallography, elemental composition and morphometry were analysed and compared with those of normal aragonite otoliths. The incidence of vaterite otoliths in the juveniles sampled (n = 601) ranged from 7·8% in the Clyde population to 13·9% in the Celtic Sea population, and was 5·5% in the small sample (n = 36) of wild adults examined. In all but one case fish had only one vaterite otolith; the corresponding otolith of the pair was completely aragonite. Although the majority of the juveniles sampled showed craniofacial deformities, there was no link between the skull or jaw malformation and the incidence of vaterite otoliths. All vaterite otoliths had an aragonite inner area, and vaterite deposition began sometime after the age of 90 days. The vaterite otoliths were larger and lighter than their corresponding aragonite partners, and were less dense as a consequence of the vaterite crystal structure. The vaterite areas of the otoliths were depleted in Sr, Na and K. Concentrations of Mn were higher in the vaterite areas. The transition between the aragonite inner areas and the vaterite areas was sharply delineated. Within a small spatial scale (20 μm3) in the vaterite areas, however, there was co‐precipitation of both vaterite and aragonite. The composition of the aragonite cores in the vaterite otoliths was the same as in the cores of the normal aragonite otoliths indicating that the composition of the aragonite cores did not seed the shift to vaterite. Vaterite is less dense than aragonite, yet the concentrations of Ca analysed with wavelength‐dispersive spectrometry (WDS) were the same between the two polymorphs, indicating that Ca concentrations measured with WDS are not a good indicator of hypermineralized zones with high mineral density. The asymmetry in density and size of the otoliths may cause disruptions of hearing and pressure sensitivity for individual fish with one vaterite otolith, however, the presence of vaterite otoliths did not seem to affect the growth of these laboratory reared juvenile herring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号