首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
  • Flowers are the main sexual reproductive organs in plants. The shapes, colours and scents of corolla of plant flowers are involved in attracting insect pollinators and increasing reproductive success. The process of corolla senescence was investigated in Ipomoea purpurea (Convolvulaceae) in this study.
  • In the research methods of plant anatomy, cytology, cell chemistry and molecular biology were used.
  • The results showed that at the flowering stage cells already began to show distortion, chromatin condensation, mitochondrial membrane degradation and tonoplast dissolution and rupture. At this stage genomic DNA underwent massive but gradual random degradation. However, judging from the shape and structure, aging characteristics did not appear until the early flower senescence stage. The senescence process was slow, and it was completed at the late stage of flower senescence with a withering corolla.
  • We may safely arrive at the conclusion that corolla senescence of I. purpurea was mediated by programmed cell death (PCD) that occurred at the flowering stage. The corolla senescence exhibited an obvious temporal rhythm, which demonstrated a high degree of coordination with pollination and fertilization.
  相似文献   

2.
Senescence mechanisms   总被引:24,自引:0,他引:24  
Senescence in plants is usually viewed as an internally programmed degeneration leading to death. It is a developmental process that occurs in many different tissues and serves different purposes. Generally, apoptosis refers to programmed death of small numbers of animal cells, and it shows some special features at the cell level. Some senescing plant cells show some symptoms typical of apoptosis, while others do not. This review will focus primarily on leaf senescence with ultimate aim of explaining whole plant senescence (i.e., monocarpic senescence). Traditionally, the ideas on senescence mechanisms fall into two major groupings, nutrient deficiencies (e.g., starvation) and genetic programming (i.e., senescence-promoting and senescence-inhibiting genes). Considerable evidence indicates that nutrient deficiencies are not central senescence program components, while increasing evidence supports genetic programming. Because chlorophyll (Chl) and chloroplast (CP) breakdown are so prominent, leaf senescence is generally measured in terms of Chl loss. Although CP breakdown may not be the proximate cause of leaf cell death, it certainly is important as a source of nutrients for use elsewhere, e.g., for developing reproductive structures in monocarpic plants, and this loss limits assimilatory capacity. The CP is dismantled in an orderly sequence. Individual protein complexes seem to be taken out all at once, not one subunit at a time. Removal of any component, e.g., Chl, seems to destabilize the whole complex. It is of special interest that senescing CPs secrete Chl-containing globules indicating that some CP components are broken down outside the CP. Senescence appears to be imposed on the CP by the nucleus, and all the known senescence-altering genes except one, cytG in soybean, are nuclear. Only the d1d2 mutation(s) in soybean prevents a broad range of leaf senescence processes. Exactly, what causes cell death is unclear; however, the selective thiol protease inhibitor, E-64, does delay death, and this suggests that proteases play a key role.  相似文献   

3.
4.
《Autophagy》2013,9(12):1975-1982
The physiological relationship between autophagy and programmed cell death during C. elegans development is poorly understood. In C. elegans, 131 somatic cells and a large number of germline cells undergo programmed cell death. Autophagy genes function in the removal of somatic cell corpses during embryogenesis. Here we demonstrated that autophagy activity participates in germ-cell death induced by genotoxic stress. Upon γ ray treatment, fewer germline cells execute the death program in autophagy mutants. Autophagy also contributes to physiological germ-cell death and post-embryonic cell death in ventral cord neurons when ced-3 caspase activity is partially compromised. Our study reveals that autophagy activity contributes to programmed cell death during C. elegans development.  相似文献   

5.
Reproductive senescence is a hallmark of aging. The molecular mechanisms regulating reproductive senescence and its association with the aging of somatic cells remain poorly understood. From a full genome RNA interference (RNAi) screen, we identified 32 Caenorhabditis elegans gene inactivations that delay reproductive senescence and extend reproductive lifespan. We found that many of these gene inactivations interact with insulin/IGF-1 and/or TGF-β endocrine signaling pathways to regulate reproductive senescence, except nhx-2 and sgk-1 that modulate sodium reabsorption. Of these 32 gene inactivations, we also found that 19 increase reproductive lifespan through their effects on oocyte activities, 8 of them coordinate oocyte and sperm functions to extend reproductive lifespan, and 5 of them can induce sperm humoral response to promote reproductive longevity. Furthermore, we examined the effects of these reproductive aging regulators on somatic aging. We found that 5 of these gene inactivations prolong organismal lifespan, and 20 of them increase healthy life expectancy of an organism without altering total life span. These studies provide a systemic view on the genetic regulation of reproductive senescence and its intersection with organism longevity. The majority of these newly identified genes are conserved, and may provide new insights into age-associated reproductive senescence during human aging.  相似文献   

6.
A. H. Cobb  A. R. Wellburn 《Planta》1973,114(2):131-142
Summary A quantitative estimation of the levels of plastidic SDS-extractable polypeptides as separated by polyacrylamide gel electrophoresis is described to demonstrate the practicality of such an approach. Using an internal standard of cytochrome c and expressing all polypeptide levels as cytochrome c relative stain equivalents, the levels of most polypeptides from developing Avena plastids change relative to the period of greening especially over the period 12–20 h. Some changes in certain polypeptides can be shown to be due to plastid senescence rather than plastid development. There is also a distinct difference in the pattern of polypeptides when plastids are isolated from different laminar regions. An incubation study using etioplasts showed of the original 8 polypeptides, six were retained, two were lost, another two were formed during incubation but eleven polypeptides found in the in situ study never appeared.SDS: Sodium dodecyl sulphate.  相似文献   

7.
Mutation at the regA locus confers on somatic cells of Volvox (which otherwise undergo programmed death) ability to redifferentiate as reproductive cells. Stable mutations at the regA locus, but not at other loci, were induced at high frequency when embryos at one particular stage were exposed to either UV irradiation, novobiocin, nalidixic acid, bleomycin, 4-hydroxyaminoquinoline-1-oxide, 5-bromodeoxyuridine, or 5-fluorouracil. All treatments led to some mutations that were not expressed until the second generation after treatment. The sensitive period was after somatic and reproductive cells of the next generation had been set apart, but before they had undergone cytodifferentiation. Hypermutability occurs in presumptive reproductive cells (in which regA is normally not expressed) somewhat before regA normally acts in somatic cells. We postulate that hypermutability of regA in the reproductive cells at this time reflects a change of state that the locus undergoes as it is inactivated.  相似文献   

8.
Colleters are secretory structure present on many families including Rubiaceae. Particular characteristics have been described about colleters secretory cells, however senescence process are still under debate. Tocoyena bullata (Vell.) Mart. (Rubiaceae) shoot apex were collected at Jardim Botânico do Rio de Janeiro, RJ/Brazil. Stipules were separated and fragments were fixed in 2.5% glutaraldehyde and 4.0% formaldehyde in 0.05 m sodium cacodylate buffer, pH 7.2, post fixed in 1.0% osmium tetroxide in the same buffer, dehydrated in acetone, critical‐point‐drying, sputtered coated and observed. For light microscopy fragments were fixed and dehydrated, infiltrated with historesin and stained with 1% toluidine blue. For transmission electron microscopy, the samples were infiltrated with Epoxi resin. Colleters are present on stipule adaxial surface. On the beginning of development, these structures are recognized as small projections. Later on, colleters differentiated and secrete by cuticle rupture. The colleters senescence occurs in a concomitant and indissoluble way of programmed cell death. Ultrastructural analyses during the process strongly suggest the senescence is based on a non‐autolitic programmed cell death. T. bullata colleters, present at stipule abaxial surface are cylindrical secretory structures. Colleters secretory cells originated as stipule projections; differentiate; secrete and senesce by programmed cell death. The secretion and the cell dead occurs in a concomitantly and indissoluble way.  相似文献   

9.
Decreases in the growth and organ-forming capacities characterized continuously cultured tobacco (Nicotiana tabacum ‘Wisconsin 38‘) callus. The root-initiation ability was completely lost in 1 1/2-year-old cultures. The rate of shoot formation decreased to a low plateau in cultures that reached 1 1/2-3 years of age since the explanting. An inverse relationship between callus growth and in vitro clonal age was also observed. Studies with callus clones started from individually isolated pith cells showed that the growth and organ-forming potentials of somatic cells varied, signifying that cell alterations had occurred in vivo. Both totipotent and non-totipotent cell lines were obtained. Subculturing the single-cell lines through several passages disclosed that the morphogenetically depressed state was irreversible and instability was characteristic of the totipotent lines. In the latter, a change toward the morphogenetically repressed level was observed. These findings are discussed in relation to the phenomenon of senescence. It is suggested that an accumulation of somatic mutations, i.e., genetic alterations resulting in reductions in the morphogenetic potential of cells, is a basis underlying senescence.  相似文献   

10.
The volvocine green algal genus Volvox includes ~20 species with diverse sizes (in terms of both diameter and cell number), morphologies, and developmental programs. Two suites of characters are shared among distantly related lineages within Volvox. The traits characteristic of all species of Volvox—large (>500) numbers of small somatic cells, much smaller numbers of reproductive cells, and oogamy in sexual reproduction—have three or possibly four separate origins. In addition, some species have evolved a suite of developmental characters that differs from the ancestral developmental program. Most multicellular volvocine algae, including some species of Volvox, share an unusual pattern of cell division known as palintomy or multiple fission. Asexual reproductive cells (gonidia) grow up to many times their initial size and then divide several times in rapid succession, with little or no growth between divisions. Three separate Volvox lineages have evolved a reduced form of palintomy in which reproductive cells are small and grow between cell divisions. In each case, these changes are accompanied by a reduction in the rate of cell division and by a requirement of light for cell division to occur. Thus, two suites of characters—those characteristic of all Volvox species and those related to reduced palintomy—have each evolved convergently or in parallel in lineages that diverged at least 175 million years ago (mya).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号