共查询到20条相似文献,搜索用时 62 毫秒
1.
三个黄颡鱼群体遗传多样性及亲缘关系的微卫星标记分析 总被引:1,自引:0,他引:1
利用微卫星标记技术对3个黄颡鱼群体(W S、TE和QF)的遗传多样性及亲缘关系进行研究。通过筛选的30个引物对3个黄颡鱼群体基因组DNA的扩增,获得了19个有效引物,其中有6个微卫星位点具有多态性,并计算出了3个黄颡鱼群体间的遗传相似系数和遗传距离,TE和QF群体间的遗传相似系数最大(0.8736),遗传距离最小(0.1790);W S和QF群体间的遗传相似系数最小(0.7284),遗传距离最大(0.2768)。同时运用聚类分析(UPGMA)的方法建立了3个黄颡鱼群体的系统发生树。 相似文献
2.
3.
采用(AC)12、(AG)12两种生物素探针,通过磁珠富集法构建了柔鱼部分基因组微卫星富集文库。68个阳性克隆中有60个含有微卫星序列,重复次数在10次以上的占86.84%,最高重复次数为33次。其中,完美型微卫星占60.53%,非完美型微卫星占36.84%,混合型微卫星占2.63%。除探针使用的AC/TG、AG/TC重复外,还得到ACAG、AGAC重复序列。利用筛选出的8个微卫星位点对北太平洋柔鱼6个群体的遗传多样性及遗传结构进行分析。结果表明,8个微卫星位点均为高度多态性位点(PIC=0.787—0.987),位点Bo103与位点Bo105极显著偏离Hardy-Weinberg平衡(P0.01)。6个地理位置的柔鱼群体显示出较高的遗传多样性水平(Ho=0.672—0.761,He=0.808—0.851)。两两群体间的Fst值以及AMOVA分析结果均表明,群体间遗传分化不显著(Fst=0.00559,P0.05),遗传差异主要来自于个体间。基于Nei's遗传距离的UPGMA聚类树显示,北太平洋东北部2个柔鱼群体(NE1、NE3)聚为一类,西北部3个群体(NW1、NW2、NW3)与东北部1个群体(NE2)另聚为一类,且群体NW1与群体NE2亲缘关系最近,遗传距离与地理距离线性相关分析没有呈现出正相关性(R=0.175,P0.05)。遗传结构分析结果推断北太平洋柔鱼存在1个理论群。柔鱼个体具有较强的游泳能力,在海流的作用下,群体之间存在较强的基因交流。建议今后在柔鱼资源开发利用过程中将北太平洋柔鱼看作1个管理单元。 相似文献
4.
5.
6.
微卫星DNA标记分析野生鲤鱼群体的遗传多样性 总被引:5,自引:0,他引:5
利用30个微卫星分子标记对海南鲤(HN)、长江鲤(CY)、月亮湖鲤(YL)、黑龙江鲤(FY)、呼伦湖鲤(ZL)、贝尔湖鲤(BR)6个野生鲤鱼群体的观测杂合度(Ho)、期望杂合度(He)、多态信息含量(PIC)和有效等位基因数(Ae)等进行了遗传检测,根据基因频率计算遗传相似系数和Nei氏标准遗传距离,χ2检验估计Hardy-Weinberg平衡,用近交系数(FST)和基因流(Nm)分析群体的遗传分化及其来源。同时,使用PHYLIP3.63软件绘制基于Nei氏标准遗传距离的UPGMA进化树。6个群体共检测到8,136个扩增片段,长度在125bp~414bp,30个基因座扩增出等位基因数从3~13个不等,共计210个等位基因,平均每个基因座扩增得到7个等位基因。结果显示:(1)6个野鲤群体的多态性指标均适中,多态信息含量依次0.44、0.52、0.53、0.57、0.63和0.64,有效等位基因数1.04~4.72个不等,平均有效等位基因数依次为2.19、2.60、2.42、2.43、2.45和2.33,无偏期望杂合度平均值为0.50、0.59、0.56、0.56、0.57和0.54;(2)遗传相似系数BR与ZL最高(0.8511),BR与HN最低(0.6688),聚类结果与地理分布呈一定相关性。 相似文献
7.
为区分黄颡鱼(Pelteobagrus fulvidraco Richardson)、瓦氏黄颡鱼(Pelteobagrus vachelli Richardson)及其杂交种,前期研究构建了一个YY超雄黄颡鱼的BAC文库并筛选到了一个包含性别连锁标记Pf62-Y的BAC克隆。研究对该BAC克隆进行测序并鉴定到了一个新基因Inad-like,而且Inad-like的外显子序列在X和Y染色体上基本一致。通过黄颡鱼Inad-like的外显子序列及序列的保守性我们设计引物在瓦氏黄颡鱼中扩增获得了其部分内含子序列。通过内含子序列比对,发现瓦氏黄颡鱼比黄颡鱼少了一个DNA片段。基于黄颡鱼和瓦氏黄颡鱼的显著遗传差异,设计了一对引物,该引物在黄颡鱼和瓦氏黄颡鱼基因组中分别扩增出1908和1178 bp DNA片段,而且在杂交黄颡鱼中同时扩增出这两个DNA片段。总之,这个新的遗传标记提供了一种稳定、高效识别黄颡鱼及其与瓦氏黄颡鱼杂交种的方法。 相似文献
8.
利用基因组重测序的方法获取高通量SNP标记,分析了长江上游三峡大坝-白鹤滩大坝之间8个不同江段(太平溪、巴南、合川、岷江口、宜宾、邵女坪、桧溪、冯家坪)共136尾瓦氏黄颡鱼(Pelteobagrus vachelli)的遗传多样性和遗传分化水平,阐明了长江上游瓦氏黄颡鱼群体遗传结构。结果显示:(1)三峡库区太平溪群体和巴南群体具有较高的SNP(singlenucleotide polymorphism)数量和核苷酸多样性指数,遗传来源丰富,其遗传多样性高于其他群体;上游的岷江口、宜宾、邵女坪和冯家坪群体遗传来源单一。(2)瓦氏黄颡鱼存在3个不同的遗传分支,且不同遗传分支之间存在较大的遗传分化。(3)群体SNP数量和核苷酸多样性指数与河流坡降呈显著负相关,群体遗传分化指数与地理距离和隔离时间无显著相关性。研究结果表明,在三峡大坝-白鹤滩大坝江段,瓦氏黄颡鱼上游群体具有更低的遗传多样性,更易发生遗传漂变作用,在鱼类遗传多样性保护中需要特别关注;瓦氏黄颡鱼存在3种显著的遗传结构,应视为3个不同遗传单元进行种质资源管理。 相似文献
9.
用20对微卫星引物对丝羽乌骨鸡BM、BF两个蛋用新品系的基因组DNA进行扩增,应用多重PCR结合全自动电泳技术分析群体遗传结构。试验结果表明:18个微卫星标记表现出丰富的多态性,每个标记平均检测到7.444个等位基因(3~15个),平均观测杂合度为0.3962,平均预期杂合度为0.7301,平均多态信息含量为0.669。本研究的标记检测结果比以前的研究报道值要高,说明全自动电泳分析技术比聚丙烯酰胺凝胶电泳结合银染法检测电泳结果的传统方法要精确,能更好地用于群体遗传结构的分析。 相似文献
10.
11.
微卫星是一类短串联重复的寡核苷酸序列,广泛地分散于各类真核生物基因组中,它具有多态性高、检测结果稳定可靠等特点,是目前较为理想的群体遗传研究的分子标记之一。该文阐述了微卫星DNA构成及特点,多态性形成机制、位点获得途径,列举了微卫星遗传标记在昆虫种群遗传学研究中的应用实例,并展望了该技术的应用前景。 相似文献
12.
Scutellaria baicalensis is a popular medicinal plant that is on the verge of extinction due to uncontrolled harvesting, habitat destruction and deterioration of its ecosystem. We isolated and characterised 21 microsatellite loci in this species. Ninety-four individuals from six populations were used to test the polymorphism of the microsatellite loci. The number of alleles per locus ranged from 1 to 13, with a mean of 7.2. Observed and expected heterozygosities varied from 0.000 to 1.000 and 0.000 to 0.938, respectively. Among these new microsatellite markers, only two loci showed significant deviation from Hardy–Weinberg equilibrium. No locus pairs showed significant linkage disequilibrium. The 21 primer pairs were tested in other Scutellaria species. Most of these primer pairs worked successfully, except for Scut18. These new microsatellite markers could be applied to investigate the genetic diversity and population genetic structure of S. baicalensis and its closely related species. 相似文献
13.
热休克蛋白70(HSP70)与生物体的抗胁迫能力密切相关。本文采用RACE (Rapid amplification of cDNA ends) 技术,从黄颡鱼Pelteobagrus fulvidraco克隆到一种组成型热休克蛋白(HSC70)基因及其cDNA。该cDNA全长2245bp,包括5′非编码区82bp,3′非编码区225bp,开放阅读框(ORF) 1938bp,编码645个氨基酸组成的蛋白质。黄颡鱼HSC70基因含有8个内含子,与人、鼠、虹鳟和花斑溪鳉的HSC70基因内含子数目相同,位置相似。其中,最长内含子(873bp)位于5′端非编码区,其余内含子(长度在80-251bp之间不等)均在编码区以内。黄颡鱼HSC70基因编码的氨基酸序列与南方鲶的相似度最高,达96.13%,与欧洲银鲫和团头鲂的相似度分别为94.45%和94.14%。RT-PCR检测显示,正常情况下黄颡鱼HSC70在血细胞、心脏、肝、头肾、脾、鳃、肌肉和脑中均有表达,但表达量在鳃中最高,肌肉中最低;统计结果显示,热激后HSC70在血细胞、肝、头肾和脑中的表达量显著上升(p<0.05),而在其余组织中热激前后的表达差异不显著(p>0.05)。 相似文献
14.
Lee S. Webley Kyall R. Zenger Graham P. Hall Desmond W. Cooper 《European Journal of Wildlife Research》2007,53(1):40-46
European fallow deer are an introduced species classified as partly protected wildlife in Tasmania, Australia. Current management
practices are primarily governed under the Quality Deer Management regime, in which animals are harvested during designated
hunting seasons. Among populations, prominent morphological differences have been reported; however, the genetic relationship
of these populations has until now been poorly understood. Representative animals were sampled from three key areas across
their range and genotyped at ten polymorphic microsatellite loci to investigate genetic diversity, population structure, and
genetic bottlenecks. Allelic richness was low in all three populations and ranged between 2.20 and 2.49 alleles/locus. A genetic
bottleneck was detected in two of the three populations (P < 0.001). Population differentiation was evident between Lake Echo and Benham (q = 0.122; P < 0.001) and Benham and Connorville (q = 0.110; P < 0.001), but not between Lake Echo and Connorville (q = 0.0235), with individuals being identified as belonging to two genetic
clusters. The pattern of population differentiation from the three study populations suggests that deer from the western region
of their range are genetically distinct to those from the eastern region. This correlates with morphological variation within
Tasmanian fallow deer, in which differences between the regions maybe attributable to geographical barriers. 相似文献
15.
In recent years, the population size of Taiwan yellow cattle has drastically declined, even become endangered. A preservation project, Taiwan Yellow Cattle Genetic Preservation Project (TYCGPP), was carried out at the Livestock Research Institute (LRI) Hengchun branch (1988–present). An analysis of intra- and inter- population variability was performed to be the first step to preserve this precious genetic resource. In this work, a total number of 140 individuals selected from the five Taiwan yellow cattle populations were analyzed using 12 microsatellite markers (loci). These markers determined the level of genetic variation within and among populations as well as the phylogenetic structure. The total number of alleles detected (122, 10.28 per locus) and the expected heterozygosity (0.712) indicated that these five populations had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups was 2 (K = 2). Genetic differentiation among clusters was moderate (F ST = 0.095). The result of AMOVA showed that yellow cattle in Taiwan had maintained a high level of within-population genetic differentiation (91%), the remainder being accounted for by differentiation among subpopulations (4%), and by differentiation among regions (5%). The results of STRUCTURE and principal component analysis (PCA) revealed two divergent clusters. The individual unrooted phylogenetic tree showed that some Kinmen yellow cattle in the Hengchun facility (KMHC individuals) were overlapped with Taiwan yellow cattle (TW) and Taiwan yellow cattle Hengchun (HC) populations. Also, they were overlapped with Kinmen × Taiwan (KT) and Kinmen yellow cattle (KM) populations. It is possible that KMHC kept similar phenotypic characteristics and analogous genotypes between TW and KM. A significant inbreeding coefficient (F IS = 0.185; P < 0.01) was detected, suggesting a medium level of inbreeding for yellow cattle in Taiwan. The hypothesis that yellow cattle in Taiwan were derived from two different clusters was also supported by the phylogenetic tree constructed by the UPGMA, indicating that the yellow cattle in Taiwan and in Kinmen should be treated as two different management units. This result will be applied to maintain a good level of genetic variability and rusticity (stress-resistance) and to avoid further inbreeding for yellow cattle population in Taiwan. 相似文献
16.
雄性普通黄颡鱼与所保护受精卵间的亲缘关系分析 总被引:2,自引:0,他引:2
父母通过保护自己的子代来确保其繁殖的成功率.在普通黄颡鱼(Pelteobagrus fulvidraco)中,雄性普通黄颡鱼具有筑巢产卵保护后代的习性,其所保护的子代与其是否有亲缘关系是有待探讨的问题.本文利用10对微卫星分子标记鉴定12窝普通黄颡鱼受精卵与护卵鱼之间的亲缘关系,并对子代的遗传多样性进行分析.在单亲鉴定中,累积非父排除概率为0.9986,平均父权相对机会(RCP)在99.989%-99.999%之间,每个子代在10个微卫星位点上的累积PI值在2006.73-604464.07之间.同时在亲权鉴定分析中,发现3窝卵子的等位基因来自2个母亲,说明雄性黄颡鱼可以和2条雌性黄颡鱼发生交配;在遗传多样性分析中,黄颡鱼子代的平均等位基因数为11.7, 无偏观测杂合度值(Ho)在0.2473-0.9866之间,多态信息含量(PIC)值0.7096-0.8993之间.通过亲权鉴定分析,可以确认看护受精卵的雄性普通黄颡鱼与受精卵间的亲子关系. 相似文献
17.
利用光学显微技术和透射电镜技术,观察和研究了出膜后1-35日龄黄颡鱼(Pelteobagrus fulvidraco)仔稚鱼的胃肠发育.水温为23-25℃时,2日龄仔稚鱼的消化道分化出口咽腔、食道、胃、肠;3日龄肠道分化为前肠、中肠、后肠.3日龄黄颡鱼开口摄食时其胃贲门部黏膜层下出现胃腺,为已有鱼类研究报道中胃腺最早出现的日龄.超微结构显示3日龄胃腺细胞中可见胃蛋白酶原颗粒和丰富的管泡系统,为典型的泌酸胃酶细胞;随日龄增加,胃蛋白酶原颗粒越来越丰富而管泡系统越来越不明显.3日龄时前肠吸收细胞胞质中可见脂肪泡,后肠吸收细胞胞质中可见蛋白质胞饮体.直到25日龄后肠吸收细胞胞质中尚可见蛋白质胞饮体.以七结果表明黄颡鱼在3日龄开口摄食时消化道具备细胞外消化功能,但此功能不完善,期间继续通过胞饮作用等细胞内消化来弥补胞外消化的不足,直到25-30日龄后细胞外消化功能发育完善.采用符合其生理机能发育过程的投喂管理策略可以有效提高大规格苗种培育的成活率. 相似文献
18.
Hucho taimen are listed as endangered in China. The population size has declined recently, prompting an increase in the level of listing from grade three in 2002 to grade five in 2006. We analyzed the genetic diversity of wild populations using 17 microsatellite markers to establish a scientific basis for conservation of this species. We collected tissue samples from four populations in the Heilongjiang River basin: Huma River (HM), Hutou (HT), Haiqing (HQ), and Zhuaji (ZJ). A total of 21 loci were amplified, 18 of which were polymorphic. The number of alleles per locus ranged from 2 to 9 (mean: 4.1905). There were 13 highly polymorphic loci and 5 moderately polymorphic loci. Analysis of five genetic diversity parameters (Na, Ne, Ho, He, and PIC) suggested moderate levels of diversity within the populations. The populations were ranked HT > HQ > ZJ > HM, but the differences in diversity were not statistically significant (P > 0.05). A comparison of variation among all four populations suggested Hardy–Weinberg disequilibrium at 20% of the loci. Genetic differentiation (Fst) was 0.0644 and the gene flow among populations was estimated at 3.36 individuals per generation. The majority of diversity (93.88%) occurred among individuals within a population. In contrast, relatively little (6.12%) of the genetic diversity was distributed between the populations. An analysis of genetic differentiation and genetic distance between pairs of populations revealed that both parameters were higher in comparisons of the HM population to the HT, HQ, and ZJ populations than among the three latter populations. This suggests that the HM population has a distinct genetic structure. We hypothesize that habitat degradation and excessive fishing, not low genetic diversity, has caused the decline in H. taimen populations. However, this species should be protected from further declines in genetic diversity. 相似文献
19.
《Saudi Journal of Biological Sciences》2020,27(7):1699-1709
Camel invokes fascinating chapter of Indian desert history and is integral component of its ecosystem. Camel population has reached a crisis point after three decades of decline (75%) causing major concern to the policy makers. >28% of Indian camel is not yet characterized. It is imperative to describe country’s camel germplasm and its existing diversity for designing conservation plan. One such population is Sindhi, distributed along border with Pakistan. Twenty five microsatellite markers being valuable tool for estimating genetic diversity were selected to elucidate genetic variability and relationship of Sindhi with two registered camel breeds of India- Marwari and Kharai. The standard metrics of genomic diversity detected moderate variability in all the three populations. A total of 303 alleles with a mean of 8.116 ± 0.587 alleles per locus were found in total of 143 animals. Sindhi population had intermediate allelic diversity with 8.522 ± 1.063 alleles per locus. Corresponding values in Marwari and Kharai were 8.783 ± 0.962 and 7.043 ± 1.030, respectively. Genetic variability within the breeds was moderate as evidenced by the mean observed heterozygosity of 0.556 ± 0.025. Sindhi camel population harbors higher genetic variability (Ho = 0.594) as compared to the two registered camel breeds (Marwari, 0.543 and Kharai, 0.531). Mean expected heterozygosity under Hardy-Weinberg equilibrium was higher than the observed values across the three camel groups, indicating deviations from assumptions of this model. In fact, average positive F value of 0.084 to 0.206 reflected heterozygote deficiency in these populations. These Indian camel populations have not experienced serious demographic bottlenecks in the recent past. Differences among populations were medium and accounted for 7.3% of total genetic variability. Distinctness of three camel populations was supported by all the approaches utilized to study genetic relationships such as genetic distances, phylogenetic relationship, correspondence analysis, clustering method based on Bayesian approach and individual assignment. Sindhi camel population was clearly separated from two registered breeds of Indian camel. Results conclude Sindhi to be a separate genepool. Moderate genetic diversity provides an optimistic viewpoint for the survival of severely declining indigenous camel populations with appropriate planning strategies for conserving the existing genetic variation and to avoid any escalation of inbreeding. 相似文献
20.
A new set of EST-SSR markers were developed and employed to analyze the genetic diversity and population structure of Phaseolus vulgaris in China. A total of 2452 microsatellites were identified in 2144 unigenes assembled from P. vulgaris ESTs, indicating that merely 6.9% of the 30,952 unigene sequences contained SSRs. Seventeen of 153 randomly designed EST-SSR primer pairs successfully amplified polymorphic products in 31 landraces from six major production provinces of China, with the mean number of alleles per locus of 2.700 and polymorphism information content of 0.378. The observed and expected heterozygosity ranged from 0.100 to 0.954 and 0.081 to 0.558, respectively. Using these markers, both an unrooted neighbor-joining tree and principal coordinates analysis showed that almost all of the landraces were separated according with their regional distribution. Moreover, population structure analysis revealed that all genotypes formed into three distinct clusters (k = 3), suggesting that geographic and climatic factors could provide diverse degrees of selection pressure. Accordingly, germplasm collection and cross breeding among different regions are suggested to accelerate the process of diverse germplasm creation and broaden germplasm resources of Chinese common bean. 相似文献