首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《植物生态学报》2017,41(4):461
Aims The objectives were to clarify the responses of C, N and P stoichiometry of Vitex rotundifolia to desertification, and determine the C, N and P stoichiometric relationships among the organs.
Methods In this study, different organs (e.g. flowers, leaves, twigs, creeping stems, fine roots) of V. rotundifolia were sampled along a desertification gradient in a typical Poyang Lak sandy hill. Subsequently, C, N and P contents of various organs were measured.
Important findings The results showed nutrient contents in different organs ranged from 386.28 to 449.47 mg·g-1 for carbon, 11.40 to 25.37 mg·g-1 for nitrogen and 0.89 to 1.54 mg·g-1 for phosphorus, respectively. C, N and P contents differed significantly among the five organs. The maximum N and P content were found in flowers, whereas the minimums were observed in twigs and creping stems. Moreover, desertification intensity only significantly affected C, N and C:P. C:N and N:P ratios maintained relatively stable. Except N:P, the other nutrient elements and associated stoichiometry significantly differed among the organs. Hence, organs, rather than desertification intensity mainly controlled the C, N and P content and their stoichiometry variability. Although there was a positive correlation between mass-based N content (Nmass) and P content (Pmass) across the three desertification zones, the Nmass-Pmass relationship in V. rotundifolia did not shift. Irrespective desertification intensity and organs, N:P stoichiometry of V. rotundifolia was well constrained. In addition, significant correlations of C, N and P contents among organs were mainly found in the above-ground parts, especially between twigs and creeping stems.  相似文献   

2.
《植物生态学报》2017,41(3):311
Aims Understanding the effects of soil microorganism at different elevations on plant C:N:P stoichiometry can help us to understand the plant-soil interactions in the context of climate change. Our aim was to quantify the independent and interactive effects of soil microbial communities and temperatures on the C, N, and P in the leaves of Dodonaea viscosa—a global widespread species. Methods Rhizosphere soils of D. viscosa were collected from two elevation zones in Yuanmou County, Yunnan Province. A 2 × 3 factorial experiment with six replications was conducted using climate chambers. The leaf C, N and P contents and the soil properties were measured after three months of the treatments. Important findings Compared with the autoclaved treatment, inoculated rhizosphere soils from both high and low elevations had higher nutrient absorption, especially P uptake. Temperature produced no significant effect on leaf C:N:P stoichiometry, but the interactive effect of temperature and microbial treatment appeared significant. For inoculated rhizosphere soils from high elevation, temperature had no significant effect on leaf C:N:P stoichiometry. For inoculated rhizosphere soils from low elevation, leaf N and P contents under low temperature were significantly lower than those with warmer soils. The promoting effect of soil microorganisms on nutrient uptake may be due to the direct effect of beneficial microorganisms (e.g., mycorrhizal fungi), but not through the alteration of nutrient cycling process. Because D. viscosa in the inoculated rhizosphere soils absorbed more N and P from the soil than those in autoclaved soil, the available N and P in inoculated rhizosphere soils were lower than those in autoclaved soils. As predicted future temperature will be lower in the studied region, the growth of D. viscosa may be negatively affected through plant-microbe feedbacks.  相似文献   

3.
《植物生态学报》2016,40(10):1028
Aims Climate warming strongly influences reproductive phenology of plants in alpine and arctic ecosystems. Here we focus on phenological shifts caused by warming in a typical alpine meadow on the Qinghai-Xizang Plateau. Our objective was to explore phenological responses of alpine plant species to experimental warming. Methods Passive warming was achieved using open-top chambers (OTCs). The treatments included control (C), and four levels of warming (T1, T2, T3, T4). We selected Kobresia pygmaea, Potentilla saundersiana, Potentilla cuneata, Stipa purpurea, Festuca coelestis and Youngia simulatrix as the focal species. Plant phenology was scored every 3-5 days in the growing season. The reproductive phenology phases of each species were estimated through fitting the phenological scores to the Richards function. Important findings Under soil water stress caused by warming, most plants in the alpine meadow advanced or delayed their reproductive events. As a result, warming significantly delayed phenological development of K. pygmaea. Warming significantly advanced reproductive phenology of P. saundersiana, S. purpurea and F. coelestis, but not of P. cuneata and Y. simulatrix. In addition, warming significantly shortened the average flowering duration of alpine plant species. The potentially warmer and drier growing seasons under climate change may shift the reproductive phenology of the alpine systems in similar pattern.  相似文献   

4.
《植物生态学报》2017,41(12):1228
Aims Leaf is the organ of plant photosynthesis, and it is important to understand the drivers for the variations of leaf nitrogen (N) and phosphorus (P) stoichiometry along geographical and climatic gradients. Here we aimed to explore: 1) the changes in leaf nitrogen (N) and phosphorus (P) stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, and 2) the relative contribution of climate, plant characteristics, and phylogeny to the changes in leaf N, P concentration and N:P.  相似文献   

5.
《植物生态学报》2016,40(12):1230
AimsTemperature is often considered as an important limiting factor for plant growth and production. Ecosystems are often affected by the global warming. However, there is little known about the effects of the global climate change to the lipid peroxidation and protective enzyme activities of Cunninghamia lanceolata in subtropical zones.MethodsHeating cables were used to generate a warmed environment in the wild. Two treatments—control and warming (with five replicates each), were used in the study. We sampled fresh leaves of the C. lanceolata to examine the osmotic adjustment substances, inter water use efficiency, protective enzyme activities, and malondialdehyde content.Important findings 1) Warming improved osmotic ability, whereas its effect on lipid peroxidation of C. lanceolata was not obvious; 2) Warming significantly improved inter water use efficiency and carbon sequestration benefits, which indicated that warming decreased the water consumption costs of carbon sequestration; 3) Warming decreased the activity of superoxide dismutase and peroxidase, but significantly increased the activity of catalase and ascorbate peroxidase. These results suggest that warming could protect itself from high temperature through protective enzyme activities (especially catalase and ascorbate peroxidase) of C. lanceolata, which is beneficial to stable cell metabolism. Therefore, more studies are needed about how temperature affects the C. lanceolata under global change in this region.  相似文献   

6.
Aims The shrublands of northern China have poor soil and nitrogen (N) deposition has greatly increased the local soil available N for decades. Shrub growth is one of important components of C sequestration in shrublands and litterfall acts as a vital link between plants and soil. Both are key factors in nutrient and energy cycling of terrestrial ecosystems, which greatly affected by nitrogen (N) addition (adding N fertilizer to the surface soil directly). However, the effects and significance of N addition on C sequestration and litterfall in shrublands remain unclear. Thus, a study was designed to investigate how N deposition and related treatments affected shrublands growth related to C sequestration and litterfall production of Vitex negundo var. heterophylla and Spiraea salicifolia in Mt. Dongling region of China.
Methods A N enrichment experiment has been conducted for V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, including four N addition treatment levels (control (N0, 0 kg N·hm-2·a-1), low N (N1, 20 kg N·hm-2·a-1), medium N (N2, 50 kg N·hm-2·a-1) and high N (N3, 100 kg N·hm-2·a-1)). Basal diameter and plant height of shrub were measured from 2012-2013 within all treatments, and allometric models for different species of shrub’s live branch, leaf and root biomass were developed based on independent variables of basal diameter and plant height, which will be used to calculate biomass increment of shrub layer. Litterfall (litterfall sometimes is named litter, referring to the collective name for all organic matter produced by the aboveground part of plants and returned to the surface, and mainly includes leaves, bark, dead twigs, flowers and fruits.) also was investigated from 2012-2013 within all treatments.
Important findings The results showed 1) mean basal diameter of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were increased by 1.69%, 2.78%, 2.51%, 1.80% and 1.38%, 1.37%, 1.59%, 2.05% every year; 2) The height growth rate (the shrub height relative growth rate is defined with the percentage increase of plant height) of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were 8.36%, 8.48%, 9.49%, 9.83% and 2.12%, 2.86%, 2.36%, 2.52% every year, respectively. Thee results indicated that N deposition stimulated growth of shrub layer both in V. negundo var. heterophylla and S. salicifolia shrublands, but did not reach statistical significance among all nitrogen treatments. The above-ground biomass increment of shrub layer in the V. negundo var. heterophylla and S. salicifolia shrublands were 0.19, 0.23, 0.14, 0.15 and 0.027, 0.025, 0.032, 0.041 t C·hm-2·a-1 respectively, which demonstrated that short-term N addition had no significant effects on the accumulation of C storage of the two shrublands. The litter production of the V. negundo var. heterophylla and S. salicifolia communities in 2013 were 135.7 and 129.6 g·m-2 under natural conditions, respectively. Nitrogen addition promoted annual production of total litterfall and different components of litterfall to a certain extent, but did not reach statistical significance among all nitrogen treatments. Above results indicated that short-term fertilization, together with extremely low soil moisture content and other related factors, lead to inefficient use of soil available nitrogen and slow response of shrublands to N addition treatments.  相似文献   

7.
灌木层作为森林生态系统的重要组成部分, 了解其生态化学计量特征将有助于揭示森林生态系统物质周转和养分循环等生态功能。该研究选取青海省7种主要优势林分——白桦(Betula platyphylla)林、毛白杨(Populus tomentosa)林红桦(Betula albosinensis)林、青扦(Picea wilsonii)林、山杨(Populus davidiana)林、圆柏(Sabina chinensis)林、云杉(Picea asperata)林为研究对象, 采用野外取样和室内实验分析相结合的方法, 研究了不同林分林下灌木层不同器官(叶、枝干、根)及其表层(0-10 cm)土壤的碳(C)、氮(N)、磷(P)含量及其相关性。结果表明: 7种林分间灌木(叶、枝干、根) P含量、C:P均没有明显差异性; 山杨林、圆柏林、云杉林的林下灌木(叶、枝干、根) N含量、N:P高于白桦林、毛白杨林、红桦林和青扦林, C:N则相反。圆柏林的林下灌木生长受P限制, 其余6种林分的林下灌木生长受N限制。7种林分间土壤有机碳(SOC)和总氮(TN)含量呈现出明显差异性, 而总磷(TP)含量则差异不明显。相关性分析表明, 林下灌木(叶、枝干、根) N含量、C:N、N:P与土壤TN含量、C:N、N:P呈极显著相关性, 而P含量、C:P与土壤TP含量呈显著相关性。冗余分析表明, 林下灌木层植被C、N、P含量及生态化学计量特征受到土壤化学计量特征及各环境因子的共同影响, 其中土壤C:N、海拔、年平均气温、年降水量为主要影响因子。  相似文献   

8.
长白山苔原是我国乃至欧亚大陆东部独有的高山苔原,根据前人调查植被以灌木苔原为主要类型。在全球变暖背景下,近30年来,长白山岳桦林下的草本植物侵入苔原带,原生灌木苔原分化为灌木苔原、灌草苔原和草本苔原,形成了灌木、灌草混合和草本3种不同类型的凋落物,凋落物数量和质量发生显著改变。与此同时长白山苔原氮沉降量也在逐年增加,导致了土壤中氮的累积,势必影响凋落物的分解。凋落物作为连接植物和土壤的纽带,其分解过程中碳(C)、氮(N)、磷(P)等化学组分和化学计量比的变化直接和间接影响着土壤养分有效性和植物养分利用策略。为揭示氮沉降增加对长白山苔原带不同类型凋落物化学组分及生态化学计量特征早期变化的影响,开展了为期8个月的模拟氮沉降室内凋落物分解实验。在苔原带采集灌木优势种牛皮杜鹃和草本优势种小叶章的凋落物带回实验室,模拟灌木牛皮杜鹃群落、灌草混合的牛皮杜鹃-小叶章群落和草本小叶章群落的3种不同类型凋落物,设置三个施氮处理:对照(CK,0 g N m-2 a-1)、低氮(LN,10 g N m-2 a-1)、高氮(HN,20 g N m-2 a-1)。研究表明:(1)不施氮处理时,3种凋落物的C、P均呈释放状态,木质素(Li)呈先累积再略有降解趋势;牛皮杜鹃凋落物的N元素富集而其余两种凋落物N元素呈释放状态;灌草混合和草本凋落物比原生的灌木凋落物C和N元素释放快、Li累积少;而灌木凋落物的P释放略快于灌草和草本凋落物。3种植被类型凋落物的C/N、C/P、Li/N大小表现为:牛皮杜鹃凋落物>牛皮杜鹃-小叶章混生群落凋落物>小叶章凋落物;N/P表现为:小叶章凋落物>牛皮杜鹃凋落物>牛皮杜鹃-小叶章混生群落凋落物。(2)氮沉降促进3种类型凋落物分解过程中C、N和P化学组分的释放,且氮浓度越高促进作用越显著。在牛皮杜鹃凋落物分解过程中,氮素添加到达某一阈值后,其C/N、C/P、N/P、Li/N的降幅最大,后续若再增加氮素,其对化学计量比的影响均会减弱;本实验中的氮素添加量增加促进了小叶章凋落物的C/N、Li/N下降。(3)草本植物入侵引起凋落物类型的变化带来凋落物分解加快,将导致长白山苔原带养分循环的变化;氮沉降增加对小叶章凋落物化学组分的释放及C/N、Li/N的下降更为促进,小叶章凋落物内难分解化合物减少,分解受到促进。高氮沉降加快了小叶章凋落物与土壤、草本植物之间的养分循环。因此,随着未来苔原带氮沉降量的增加,将更有利于小叶章在与牛皮杜鹃的竞争中获胜,使苔原带呈现草甸化趋势。  相似文献   

9.
《植物生态学报》2017,41(1):136
Aims Carbon (C), nitrogen (N) and phosphorus (P) play important roles in plant growth and physiological functions. We aimed at exploring the intrinsic relationships of C, N and P in Myrica nana—a common shrub in Yunnan Province—as well as their relationships with pant biomass and soil nutrients.
Methods We measured the concentration of C, N and P of M. nana from 29 sites for their magnitudes and correlations with soil nutrients.
Important findings 1) The arithmetic mean value of C, N and P concentration in the roots, stems and leaves of M. nana was 45.94%, 0.54%, 0.03%, and 46.32%, 0.58%, 0.03%, and 49.05%, 1.70%, 0.06%, respectively. C, N and P concentrations in the leaves were significantly higher than those in the roots and the stems. The C:N:P in roots, stems and leaves was 1531:18:1, 1544:19:1, and 818:10:1, respectively. 2) The C concentration and N:P in leaves of M. nana decreased with the increase of biomass of M. nana; the leaf C concentration was significantly correlated with biomass (p < 0.01), while the correlation between N:P and biomass was not significant (p > 0.05). The leaf N increased with the increase of plant biomass, the P was significantly correlated with biomass (p < 0.05), but the correlation between N concentration and biomass was not significant (p > 0.05). N:P in leaves was 34.2, suggesting that plant growth was limited by P. 3) C, N and P concentration in the roots were significantly correlated with soil P (p < 0.05), with N, P concentrations correlated with soil P positively (p < 0.01) and C negatively (p < 0.05). C concentration in the stems was significantly and negatively correlated with soil C, N, with significant correlation with C, N, and P concentration (p < 0.01). P concentration in the stems was significantly and positively correlated with soil P concentration (p < 0.01), while leaf P significantly and positively correlated with soil C, N and P (p < 0.01); leaf C concentration was significantly and negatively correlated with soil P (p < 0.01).  相似文献   

10.
《植物生态学报》2017,41(3):325
Aims The increase in atmospheric nitrogen (N) deposition has accelerated N cycling of ecosystems, probably resulting in increases in phosphorus (P) demand of ecosystems. Studies on the effects of artificial N:P treatment on the growth and carbon (C), N, P ecological stoichiometry of desert steppe species could provide not only a new insight into the forecasting of how the interaction between soils and plants responses to long-term atmospheric N deposition increase, but also a scientific guidance for sustainable management of grassland in northern China under global climate change. Methods Based on a pot-cultured experiment conducted for Glycyrrhiza uralensis (an N-fixing species) during 2013 to 2014, we studied the effects of different N:P supply ratios (all pots were treated with the same amount of N but with different amounts of P) on aboveground biomass, root biomass, root/shoot ratio, and C:N:P ecological stoichiometry both in G. uralensis (leaves and roots) and in soils. Additionally, through the correlation analyses between biomass and C:N:P ecological stoichiometry in leaves, roots, and soils, we compared the differences among the C:N:P ecological stoichiometry of the three pools, and discussed the indication of C:N:P ecological stoichiometry in soils for the growth and nutrient uptake of G. uralensis. Important findings The results showed that, reducing N:P decreased C:P and N:P ratios both in G. uralensis (leaves and roots) and in soils but increased aboveground biomass and root biomass of G. uralensis, indicating that low to moderate P addition increased P availability of soils and P uptake of G. uralensis. However, excessive low N:P (high P addition) led to great decreases in soil C:P and N:P ratios, thus hindering N uptake and the growth of G. uralensis. C:N:P ratios in the two pools of G. uralensis (especially in leaves) had close correlations with soil C:N:P ratio, indicating that the change in soil C:N:P ratio would have a direct influence on plants. Our results suggest that, through regulating C:N:P ratio in leaves and soils, appropriate amounts of P addition could balance soil P supply and plant P demand and compensate the opposite influences of long-term atmospheric N deposition increase on the structure of desert steppe.  相似文献   

11.
通过测定祁连山东部亚高山草甸256个群落样方的群落物种数和地上植物的C、N、P元素含量, 探究了该地区高产草地和低产草地植物群落物种多样性与植物群落C、N、P生态化学计量特征的关系。结果表明: 高产样地植物群落C、N、P含量的平均值分别为53.05%、1.99%、0.22%; 而低产样地植物群落C、N、P含量的平均值分别为52.51%、2.28%、0.19%。高产和低产样地植物群落C、N、P元素含量均呈现显著差异。高产样地上植物群落的物种数与N含量和N:P呈显著正相关关系, 与C:N呈显著负相关关系, 但与C、P含量和C:P无明显相关关系; 低产样地上植物群落的物种数与N、P含量呈极显著负相关关系, 与C:N和C:P呈显著正相关关系, 但与C含量和N:P无明显相关关系。说明高产草地和低产草地植物群落物种多样性与养分元素化学计量特征显示出一定的分异性, 高产样地上植物群落的物种数主要受N含量的限制, 与N含量呈正相关关系; 低产样地上植物群落的物种数则受N、P含量共同限制, 与N、P含量呈负相关关系。  相似文献   

12.
《植物生态学报》2017,41(10):1081
Aims Pinus massoniana is one of the major plantation tree species in the low hilly lands along the upper reaches of the Yangtze River Valley in China’s “Grain for Green” project. The objective of this study was to explore the edge effects of forest gap on the ecological stoichiometry of dominant tree species in a P. massoniana plantation forest.Methods We collected Cinnamomum longepaniculatum leaves in a 39-year-old P. massoniana plantation forest with seven forest gap sizes (G1: 100 m2; G2: 225 m2; G3: 400 m2; G4: 625 m2; G5: 900 m2; G6: 1 225 m2; G7: 1 600 m2, and the control: closed canopy) located in Gao County, south Sichuan Province during different seasons. The contents of C, N and P in leaves were measured, and the effects of edges, seasons and their interaction on leaf C, N and P contents and C:N:P stoichiometry were evaluated.Important findings The leaf C content, C:N and C:P of C. longepaniculatum at the edge of forest gaps in different seasons were all significantly higher than those of understory plants in P. massoniana plantation. With increasing size of forest gaps, leaf C content and C:N ratio, C:P and N:P of C. longepaniculatum increased initially and then decreased with the maximum at medium size (400-900 m2). From spring to winter, leaf N and P contents of C. longepaniculatum increased after an obvious decrease; and the C:N and C:P increased first but then decreased. However, the inflection point all appeared in the summer. The nutrient utilization of C. longepaniculatum at the edge of forest gaps was more efficient in summer and autumn than in spring and winter, indicating significant edge effects. The results of principal component analysis (PCA) suggested that gap size, relative light intensity and monthly average air temperature were the main environmental factors affecting the stoichiometry of C. longepaniculatum at the different edge of forest gaps in the P. massoniana plantation. These results indicated that forest gap with size 625 m2 had the highest organic matter storage and nutrient utilization efficiency in the edge areas in all seasons, and therefore had the most significant edge effect on leaf element stoichiometry.  相似文献   

13.
肖瑶  王根绪  杨燕  杨阳  彭阿辉  张莉 《生态学杂志》2017,28(4):1161-1167
采用开顶式增温小室(OTCs)方法模拟气候变暖,分别选取青藏高原腹地风火山地区高寒小嵩草草甸和高寒藏嵩草沼泽草甸优势物种小嵩草和藏嵩草为研究对象,对比分析增温处理下两种优势物种叶片的形态与生理特征变化,从而探索高寒植物对气候变暖的内在响应机理.结果表明: 增温显著增加了小嵩草叶片长度(40.0%)和叶片数量(72.7%),也显著增加了藏嵩草株高(11.9%)和叶片长度(19.3%),促进了两种优势植物的形态生长和地上生物量增加.增温处理下小嵩草和藏嵩草叶片的膜透性(电导率),活性氧(过氧化氢和超氧阴离子自由基),超氧化物歧化酶、过氧化物酶、抗坏血酸过氧化物酶和过氧化氢酶活性,丙二醛含量均没有显著变化.但抗坏血酸和游离脯氨酸含量在藏嵩草叶片内分别显著增加了29.8%和53.8%,而在小嵩草叶片内没有明显变化.可见,增温下小嵩草和藏嵩草均能够维持正常的抗氧化水平,以维持该区域优势植物生长;但藏嵩草生理过程对增温更加敏感.  相似文献   

14.
为揭示植被恢复过程中生态系统的养分循环机制及植物的生存策略, 根据亚热带森林群落演替过程, 采用空间代替时间方法, 以湘中丘陵区地域相邻、环境条件基本一致的檵木(Loropetalum chinensis) +南烛(Vaccinium bracteatu) +杜鹃(Rhododendron mariesii)灌草丛(LVR)、檵木+杉木(Cunninghamia lanceolata) +白栎(Quercus fabri)灌木林(LCQ)、马尾松(Pinus massoniana) +柯(Lithocarpus glaber) +檵木针阔混交林(PLL)、柯+红淡比(Cleyera japonica) +青冈(Cyclobalanopsis Glauca)常绿阔叶林(LCC)作为一个恢复系列, 设置固定样地, 采集植物叶片、未分解层凋落物和0-30 cm土壤样品, 测定有机碳(C)、全氮(N)、全磷(P)含量及其化学计量比, 运用异速生长关系、养分利用效率和再吸收效率分析植物对环境变化的响应和养分利用策略。结果表明: (1)随着植被恢复, 叶片C:N、C:P、N:P显著下降, 而叶片C、N、P含量和土壤C、N含量、C:P、N:P显著增加, 其中LCC植物叶片C、N含量, 土壤C、N含量及其N:P, PLL植物叶片P含量, 土壤C:P显著高于其他3个恢复阶段, 各恢复阶段植物叶片N:P > 20, 植物生长受P限制; 凋落物C、N、P含量及其化学计量比波动较大。(2)凋落物与叶片、土壤的化学计量特征之间的相关关系较弱, 叶片与土壤的化学计量特征之间具有显著相关关系, 其中叶片C、N、P含量与土壤C、N含量、C:N (除叶片C、N含量外)、C:P、N:P呈显著正相关关系; 叶片C:N与土壤C、N含量、C:P、N:P, 叶片C:P与土壤C含量、C:N、C:P, 叶片N:P与土壤C:N呈显著负相关关系。(3)植被恢复过程中, 叶片N、P之间具有显著异速生长关系, 异速生长指数为1.45, 叶片N、P的利用效率下降, 对N、P的再吸收效率增加, LCC叶片N利用效率最低, PLL叶片P利用效率最低而N、P再吸收效率最高。(4)叶片N含量内稳态弱, 而P含量具有较高的内稳态, 在土壤低P限制下植物能保持P平衡。植被恢复显著影响叶片、凋落物、土壤C、N、P含量及其化学计量比, 叶片与土壤之间C、N、P含量及化学计量比呈显著相关关系, 植物通过降低养分利用效率和提高养分再吸收效率适应土壤养分的变化, 叶片-凋落物-土壤系统的N、P循环随着植被恢复逐渐达到“化学计量平衡”。  相似文献   

15.
刘洋  张健  陈亚梅  陈磊  刘强 《植物生态学报》2013,37(10):933-941
巨桉(Eucalyptus grandis)是一种优良的速生用材树种, 了解氮(N)和磷(P)对巨桉生长、养分限制、化学计量特征的影响对于科学合理施肥具有重要意义。该实验以巨桉无性系组培苗为研究对象, 通过在酸性紫色土中设置不同施N或施P梯度, 研究巨桉幼苗各器官(根、茎、叶)生物量及碳(C)、N、P的分配和化学计量特征以及巨桉生长的养分限制状况。结果表明: 施N处理对巨桉根茎叶及总生物量的影响极显著, 增加了地上部分的生物量比例而显著降低了根系的生物量比例; 施P对巨桉幼苗总生物量影响不显著, 但显著提高了根的生物量分配比例, 对茎和叶的生物量分配没有显著影响。施N或施P显著改变了巨桉幼苗的N、P含量和化学计量比, 同时也显著影响了土壤与植物N:P的关系。施N可以促使酸性紫色土条件下巨桉对N的吸收而抑制对P的吸收, 施P则促进巨桉幼苗对P的吸收。施N对巨桉幼苗根茎叶的C、N、P分配特征有极显著影响, 而施P对巨桉幼苗根茎叶的C、N、P分配没有显著影响。施N极显著降低了巨桉幼苗N的利用率, 显著提高了P的利用率, 而施P处理极显著降低了巨桉幼苗P的利用率。从巨桉生物量沿施肥梯度和N:P的变化规律可以判断, 当叶片N:P < 15时, 巨桉的生长主要受到N的限制作用。施N可以显著地提高根茎叶的N:P比值, 缓解巨桉缺N的现象, 施P则进一步加剧了N元素的缺乏。  相似文献   

16.
黄土高原不同人工林叶片-凋落叶-土壤生态化学计量特征   总被引:8,自引:0,他引:8  
为探究“退耕还林(牧)”工程对陕西省子午岭林区的影响,分析3种典型的人工林(刺槐林、油松林和侧柏林)叶片-凋落叶-土壤的C、N、P含量及其生态化学计量特征.结果表明: 3种人工林不同组分中C、N、P含量大小均为叶片>凋落叶>土壤,刺槐林叶片N、P含量显著高于油松林和侧柏林.刺槐林、油松林和侧柏林叶片N∶P分别为12.2、5.4和6.1,油松和侧柏较刺槐林存在N亏损,C∶N和C∶P大小均为凋落叶>叶片>土壤,N∶P为叶片>凋落叶>土壤.油松林叶片C∶N与凋落叶C∶N间存在显著正相关关系.刺槐叶片在生长周期内吸收利用的N和P存在比例关系,且其凋落叶在元素再吸收后N和P的残留量也存在比例关系.与油松和侧柏相比,刺槐是黄土高原南部森林带最适宜的造林树种.  相似文献   

17.
《植物生态学报》2016,40(8):760
Aims Stoichiometric ratios of carbon (C), nitrogen (N) and phosphorus (P) are important characteristics of the ecological processes and functions. Studies on population ecological stoichiometry can refine the content of flora chemometrics, determine the limited nutrient, and provide data for process-based modeling over large scale. Phyllostachys edulis is an important forest type, whose area accounts for 74% of total bamboo forest area in Southern China. However, little is known about the ecological stoichiometric in P. edulis. This study aimed to reveal C:N, C:P and N:P stoichiometry characteristics of the “plant-soil-litter” continuum and to provide a better understanding nutrient cycling and stability mechanisms in P. edulis forest in China. Methods The data were collected from the published literature containing C、N、P content in leaf or surface soil (0-20 cm) or littefall in P. edulis forests. Important findings 1) The leaf C, N, P content were estimated at 478.30 mg·g-1, 22.20 mg·g-1, 1.90 mg·g-1 in P. edulis, and the corresponding C: N, C: P and N: P were 26.80, 299.60 and 14.40, respectively. Soil C, N, and P content in 0-20 cm were 21.53 mg·g-1, 1.66 mg·g-1, 0.41 mg·g-1, with ratios of 14.20 for C:N, 66.74 for C:P and 4.28 for N:P. The C, N and P contents were 438.49 mg·g-1, 13.39 mg·g-1, 0.86 mg·g-1 for litterfall, with the litter C:N, C:P and N:P being 25.53, 665.67, 22.55, respectively. 2) In the plant-soil-litter system in P. edulis forest, leaf had higher C:N, litter had higher C:P and N:P, while soil were the lowest. The N, P resorption rate was 39.68% and 54.74%, indicating that P. edulis forest growth and development was constrained by P or by both of N and P in China. 3) N content and N:P in leaf showed a tendency to increase with latitude, while the C:N of leaf declined with latitude. N:P of leaf increased with longitude, but the P content and the C:N of leaf showed a opposite trend. C: N of soil increased with longitude, whereas the N content of soil declined longitude. The N content of litter declined with longitude. 4) The leaf N content was negatively correlated with mean annual temperature and mean annual precipitation, but being more sensitive to temperature than precipitation. The positive correlations between N content and latitude support “Temperature-Plant Physiological” hypothesis, reflecting an adaptive strategy to environmental conditions.  相似文献   

18.
《植物生态学报》2016,40(9):871
AimsArundinella anomala and Miscanthus sinensis are dominant species in the subalpine meadow of Wugongshan Mountains. Here we studied the effects of climate warming on allometric relationships among different growth components in the two species through simulated warming in natural habitat.
Methods The warming experiments were conducted with open-top chambers (OTCs) in natural habitat in a subalpine meadow community of Wugongshan Mountains. The two main Gramineae species, Arundinella anomala and Miscanthus sinensis, were selected as the study materials. Two sizes of OTCs were set up to create contrasting levels of warming (i.e. TD for low warming and TG for high warming). The morphological variables, such as the plant height and the basal diameter of shoots, were measured. Allometric analysis was conducted with the Smart Package in R software.
Important findings Significant or highly significant correlations and significant allometric relationships were found between and among growth components in both species. The allometry of the growth in most morphological features was strengthened and modified by simulated warming. Stem diameter and plant height, and spike length in A. anomala and M. sinensis changed from isometric to allometric following warming. The relationship The synchronized growth between stem diameter and spikelet in A. anomala was weakened, but their allometry was enhanced with increased warming. The allometric relationship between plant height and leaf length in A. anomala transformed into isometric growth, but it was in reversed pattern in M. sinensis. Warming promoted the plant height and leaf sheath length in A. anomala, whilst higher warming changed the growth relationship between plant height and leaf sheath length in M. sinensis. Similar allometric relationships among the leaf traits were observed, but warming did not significantly impact their allometric exponents. The results suggested that climate warming could have varied effects on different plants, and the differences are often related to the adaptability of plants.  相似文献   

19.
《植物生态学报》2016,40(12):1219
AimsGlobal warming could have profound effects on ecosystem carbon (C) fluxes in alpine ecosystems. The aim of our study is to examine the effects of gradient warming on net ecosystem carbon exchange (NEE).MethodsIn the Northern Tibetan Grassland Ecosystem Research Station (Nagqu station), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, we conducted various levels of temperature increasing experiments (i.e., 2 °C and 4 °C increments). The warming was achieved using open-top chambers (OTCs). In total, there were three levels of temperature treatments (control, 2 °C and 4 °C increment), and four replicates for each treatment. The ecosystem NEE was monitored every five days during the growing season in 2015.Important findings Our findings highlight the importance of soil moisture in mediating the responses of NEE to climatic warming in alpine meadow ecosystem. The 4 °C warming significantly stimulated NEE,except for July measurements. The 2 °C warming had no effects on NEE during the growing season. Compared to the 2 °C warming, the 4 °C warming significantly stimulated NEE. The results showed that our targeted ecosystem acts as a carbon sink under 2 °C warming, whereas will act as a net carbon source under 4 °C warming in the future. This study provides basic data and theoretical basis for evaluating the alpine ecosystem’s responses to climate change.  相似文献   

20.
《植物生态学报》1958,44(8):885
研究微尺度海拔梯度土壤酶活性与化学计量学比值的动态变化及驱动因素对于探讨生态系统养分循环过程具有重要意义。该研究以秦岭太白山6个海拔(分别为1 308、1 403、1 503、1 603、1 694和1 803 m)的锐齿栎(Quercus aliena var. acuteserrata)林作为研究对象, 测定锐齿栎叶片、凋落物、细根和土壤的碳(C)、氮(N)、磷(P)含量以及碱性磷酸酶(AKP)、β-1,4-葡萄糖苷酶(βG)、纤维二糖水解酶(CBH)、木糖苷酶(βX)与β-N-乙酰氨基葡萄糖苷酶(NAG)的活性, 探究不同海拔植物、土壤、酶含量如何变化及驱动土壤酶活性变化的主要因子。结果表明: 5种土壤酶活性在海拔梯度上表现出不同的变化趋势, CBH和βG活性随海拔升高整体呈先增后减趋势, βX与之相反; NAG与AKP活性在1 408-1 694 m呈下降趋势, 在1 803 m处有所升高; 土壤总体酶活性随海拔上升整体表现为降低趋势。相关性分析表明, 土壤酶活性及其化学计量比不同程度上受到植物和土壤C、N、P资源及土壤水热条件等的调控, 其中与土壤有机碳含量的相关性较高, 土壤有机碳含量可被认为是锐齿栎林中影响土壤酶活性变化的主要因子。总之, 土壤酶活性及化学计量比在微尺度海拔梯度上具有差异性, 且受到植物和土壤C、N、P资源的综合影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号