首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Merali Z  Mayer MJ  Parker ML  Michael AJ  Smith AC  Waldron KW 《Planta》2007,225(5):1165-1178
Studies involving transgenic plants with modifications in the lignin pathway reported to date, have received a relatively preliminary characterisation in relation to the impact on vascular integrity, biomechanical properties of tissues and carbon allocation to phenolic pools. Therefore, in this study transgenic tobacco plants (Nicotiana tabacum cv XHFD 8) expressing various levels of a bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL) gene have been characterised for cell wall and related morphological changes. The HCHL enzyme converts p-coumaroyl-CoA to 4-hydroxybenzaldehyde thereby rerouting the phenylpropanoid pathway. Plants expressing high levels of HCHL activity exhibited reduced lignin deposition, impaired monolignol biosynthesis and vascular integrity. The plants also exhibited reduction in stem toughness concomitant with a massive reduction in both the cell wall esterified and soluble phenolics. A notable result of redirecting the carbon flux was the wall-bound accretion of vanillin and vanillic acid, probably due to the shunt pathway. Intracellular accumulation of novel metabolites such as hydroxybenzoic and vanillic acid derivatives also occurred in the transgenic plants. A line with intermediate levels of HCHL expression conferred correspondingly reduced lignin deposition, toughness and phenolics. This line displayed a normal morphology but distorted vasculature. Coloration of the xylem has been previously attributed to incorporation of alternative phenolics, whereas results from this study indicate that the coloration is likely to be due to the association of low molecular weight phenolics. There was no evidence of increased growth or enhanced cellulose biosynthesis as a result of HCHL expression. Hence, rerouting the phenylpropanoid biosynthetic pathway quantitatively and qualitatively modifies cell wall-bound phenolics and vascular structure.  相似文献   

2.
3.
Chlorogenic acid (CGA) is one of the most abundant phenolic compounds in tomato (Solanum lycopersicum). Hydroxycinnamoyl CoA quinate transferase (HQT) is the key enzyme catalysing CGA biosynthesis in tomato. We have studied the relationship between phenolic accumulation and UV-susceptibility in transgenic tomato plants with altered HQT expression. Overall, increased CGA accumulation was associated with increased UV-protection. However, the genetic manipulation of HQT expression also resulted in more complex alterations in the profiles of phenolics. Levels of rutin were relatively high in both HQT gene-silenced and HQT-overexpressing plants raised in plant growth tunnels. This suggests plasticity in the flux along different branches of phenylpropanoid metabolism and the existence of regulatory mechanisms that direct the flow of phenolic precursors in response to both metabolic parameters and environmental conditions. These changes in composition of the phenolic pool affected the relative levels of UV-tolerance. We conclude that the capability of the phenolic compounds to protect against potentially harmful UV radiation is determined both by the total levels of phenolics that accumulate in leaves as well as by the specific composition of the phenolic profile.  相似文献   

4.
Yao K  De Luca V  Brisson N 《The Plant cell》1995,7(11):1787-1799
The creation of artificial metabolic sinks in plants by genetic engineering of key branch points may have serious consequences for the metabolic pathways being modified. The introduction into potato of a gene encoding tryptophan decarboxylase (TDC) isolated from Catharanthus roseus drastically altered the balance of key substrate and product pools involved in the shikimate and phenylpropanoid pathways. Transgenic potato tubers expressing the TDC gene accumulated tryptamine, the immediate decarboxylation product of the TDC reaction. The redirection of tryptophan into tryptamine also resulted in a dramatic decrease in the levels of tryptophan, phenylalanine, and phenylalanine-derived phenolic compounds in transgenic tubers compared with nontransformed controls. In particular, wound-induced accumulation of chlorogenic acid, the major soluble phenolic ester in potato tubers, was found to be two- to threefold lower in transgenic tubers. Thus, the synthesis of polyphenolic compounds, such as lignin, was reduced due to the limited availability of phenolic monomers. Treatment of tuber discs with arachidonic acid, an elicitor of the defense response, led to a dramatic accumulation of soluble and cell wall-bound phenolics in tubers of untransformed potato plants but not in transgenic tubers. The transgenic tubers were also more susceptible to infection after inoculation with zoospores of Phytophthora infestans, which could be attributed to the modified cell wall of these plants. This study provides strong evidence that the synthesis and accumulation of phenolic compounds, including lignin, could be regulated by altering substrate availability through the introduction of a single gene outside the pathway involved in substrate supply. This study also indicates that phenolics, such as chlorogenic acid, play a critical role in defense responses of plants to fungal attack.  相似文献   

5.
Transcriptional control of lignin biosynthesis by tobacco LIM protein.   总被引:7,自引:0,他引:7  
A Kawaoka  H Ebinuma 《Phytochemistry》2001,57(7):1149-1157
  相似文献   

6.
Initially, we isolated the caffeic acid O-methyltransferase (COMT) gene from Miscanthus sinensis (accession number HM062766.1). Next, we produced transgenic tobacco plants with down-regulated COMT gene expression to study its control of total phenol and lignin content and to perform morphological analysis. These transgenic plants were found to have reduced PAL and ascorbate peroxidases expression, which are related to the phenylpropanoid pathway and antioxidant activity. The MsCOMT-down-regulated plants had decreased total lignin in the leaves and stem compared with control plants. Reduced flavonol concentrations were confirmed in MsCOMT-down-regulated transgenic plants. We also observed a morphological difference, with reduced plant cell number in transgenic plants harboring antisense MsCOMT. The transgenic tobacco plants with down-regulated COMT gene expression demonstrate that COMT plays a crucial role related to controlling lignin and phenol content in plants. Also, COMT activity may be related to flavonoid production in the plant lignin pathway.  相似文献   

7.
Jasmonates have been proposed to be signaling intermediates in the wound and/or elicitor-activated expression of plant defense genes. We used parsley (Petroselinum crispum) cell cultures and transgenic tobacco (Nicotiana tabacum) plants expressing 4CL1-GUS gene fusions to investigate the potential role played by jasmonates in mediating the wound and/or elicitor activation of phenylpropanoid and other defense-related genes. Jasmonates and [alpha]-linolenic acid strongly induced the expression of 4CL in a dose-dependent manner in parsley cells; methyl jasmonate also activated the coordinate expression of other phenylpropanoid genes and the accumulation of furanocoumarin phytoalexins. However, the response of the cells to optimal methyl jasmonate concentrations was distinct quantitatively and qualitatively from the response of elicitor-treated cells. In transgenic tobacco wound-inducible tobacco 4CL genes and a 4CL1 promoter-GUS transgene were responsive to jasmonates and [alpha]-linolenic acid in a dose-dependent manner. Pre-treatment of parsley cells or tobacco leaves with a lipoxygenase inhibitor reduced their responsiveness to the elicitor and to wounding. These results show that the elicitor response in parsley cells can be partially mimicked by jasmonate treatment, which supports a role for jasmonates in mediating wound-induced expression of 4CL and other phenylpropanoid genes.  相似文献   

8.
Treatment with ethephon increased the concentration of exogenous ethylene in Medicago sativa L. embryogenic cell suspension cultures (consisting of single cells, small cellular clumps and globular somatic embryos) and induced changes in the metabolism of phenolic substances, activities of peroxidase (EC 1.11.1.7) and caused significant suppression of suspension culture growth. Treatment with the ethylene-releasing substance, ethephon, resulted in a several-fold increase in phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) activity above the basal level and was accompanied by an elevated accumulation of phenolic acids (significant increase of methoxy-substituted acids). The majority of newly synthesised phenolic acids was incorporated into the fractions of glycosides and esters bound to the cell wall. Phenolic glycosides seemed to serve as a metabolic pool from which the phenolics were utilised during further culture. The increased activity of wall-bound ionic peroxidase after ethephon application correlated with the pronounced incorporation of ferulic acid in the cell walls. In contrast, the increased level of exogenous ethylene did not influence the growth of culture of more advanced embryos nor did it significantly alter phenylpropanoid metabolism.  相似文献   

9.
10.
11.
Different transgenic tobacco lines down-regulated for either one or two enzymes of the monolignol pathway were compared for their lignin content and composition, and developmental patterns. The comparison concerned CCR and CAD down-regulated lines (homozygous or heterozygous for the transgene) and the hybrids resulting from the crossing of transgenic lines individually altered for CCR or CAD activities. Surprisingly, the crosses containing only one allele of each antisense transgene, exhibit a dramatic reduction of lignin content similar to the CCR down-regulated parent but, in contrast to this transgenic line, display a normal phenotype and only slight alterations of the shape of the vessels. Qualitatively the lignin of the double transformant displays characteristics more like the wild type control than either of the other transgenics. In the transgenics with a low lignin content, the transformations induced other biochemical changes involving polysaccharides, phenolic components of the cell wall and also soluble phenolics. These results show that the ectopic expression of a specific transgene may have a different impact depending on the genetic background and suggest that the two transgenes present in the crosses may operate synergistically to reduce the lignin content. In addition, these data confirm that plants with a severe reduction in lignin content may undergo normal development at least in controlled conditions.  相似文献   

12.
Understanding regulation of phenolic metabolism underpins attempts to engineer plants for diverse properties such as increased levels of antioxidant flavonoids for dietary improvements or reduction of lignin for improvements to fibre resources for industrial use. Previous attempts to alter phenolic metabolism at the level of the second enzyme of the pathway, cinnamate 4-hydroxylase have employed antisense expression of heterologous sequences in tobacco. The present study describes the consequences of homologous sense expression of tomato CYP73A24 on the lignin content of stems and the flavonoid content of fruits. An extensive number of lines were produced and displayed four developmental variants besides a normal phenotype. These aberrant phenotypes were classified as dwarf plants, plants with distorted (curly) leaves, plants with long internodes and plants with thickened waxy leaves. Nevertheless, some of the lines showed the desired increase in the level of rutin and naringenin in fruit in a normal phenotype background. However this could not be correlated directly to increased levels of PAL and C4H expression as other lines showed less accumulation, although all lines tested showed increases in leaf chlorogenic acid which is typical of Solanaceous plants when engineered in the phenylpropanoid pathway. Almost all transgenic lines analysed showed a considerable reduction in stem lignin and in the lines that were specifically examined, this was correlated with partial sense suppression of C4H. Although not the primary purpose of the study, these reductions in lignin were amongst the greatest seen in plants modified for lignin by manipulation of structural genes. The lignin showed higher syringyl to coniferyl monomeric content contrary to that previously seen in tobacco engineered for downregulation of cinnamate 4-hydroxylase. These outcomes are consistent with placing CYP73A24 more in the lignin pathway and having a role in flux control, while more complex regulatory processes are likely to be involved in flavonoid and chlorogenic acid accumulation.  相似文献   

13.
We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense suppression resulted in reduced levels of Klason lignin, accompanied by a decreased syringyl/guaiacyl monomer ratio as determined by pyrolysis gas chromatography/mass spectrometry Similar reduction of lignin levels by down -regulation of L-phenylalanine ammonia-lyase, the enzyme preceding C4H in the central phenylpropanoid pathway, did not result in a decreased syringyl/guaiacyl ratio. Rather, analysis of lignin methoxyl content and pyrolysis suggested an increased syringyl/guaiacyl ratio. One possible explanation of these results is that monolignol biosynthesis from L-phenylalanine might occur by more than one route, even at the early stages of the core phenylpropanoid pathway, prior to the formation of specific monolignol precursors.  相似文献   

14.
15.
16.
We present evidence that overproduction of endogenous cytokinins (CK) caused stress response in non-rooting Pssu-ipt transgenic tobacco (Nicotiana tabacum L.) grown in vitro. It was demonstrated by overaccumulation of phenolic compounds, synthesis of pathogenesis related proteins (PR proteins), and increase in peroxidase (POD) activities. Immunolocalization of zeatin and also PR-1b protein on leaf cryo-sections proved their accumulation in all mesophyll cells of transgenic tobacco contrary to control non-transgenic plants. Intensive blue autofluorescence of phenolic compounds induced by UV in cross-sections of leaf midrib showed enhanced contents of phenolics in transgenic tobacco compared with controls, nevertheless, no significant difference between both plant types was found in leaf total lignin content. Transgenic plantlets exhibited higher peroxidase activities of both soluble and ionically bound fractions compared with controls. HPLC analysis of phenolic acids confirmed the increase in all phenolic acids in transgenic tobacco except for salicylic acid (SA). The effect of high phenolic content on rooting of transgenic tobacco is discussed.  相似文献   

17.
18.
Jin CW  You GY  He YF  Tang C  Wu P  Zheng SJ 《Plant physiology》2007,144(1):278-285
Phenolic compounds are frequently reported to be the main components of root exudates in response to iron (Fe) deficiency in Strategy I plants, but relatively little is known about their function. Here, we show that removal of secreted phenolics from the root-bathing solution almost completely inhibited the reutilization of apoplastic Fe in roots of red clover (Trifolium pratense). This resulted in much lower levels of shoot Fe and significantly higher root Fe compared with control and also resulted in leaf chlorosis, suggesting this approach stimulated Fe deficiency. This was supported by the observation that phenolic removal significantly enhanced root ferric chelate reductase activity, which is normally induced by plant Fe deficiency. Furthermore, root proton extrusion, which also is normally increased during Fe deficiency, was found to be higher in plants exposed to the phenolic removal treatment too. These results indicate that Fe deficiency-induced phenolics secretion plays an important role in the reutilization of root apoplastic Fe, and this reutilization is not mediated by proton extrusion or the root ferric chelate reductase. In vitro studies with extracted root cell walls further demonstrate that excreted phenolics efficiently desorbed a significant amount of Fe from cell walls, indicating a direct involvement of phenolics in Fe remobilization. All of these results constitute the first direct experimental evidence, to our knowledge, that Fe deficiency-induced secretion of phenolics by the roots of a dicot species improves plant Fe nutrition by enhancing reutilization of apoplastic Fe, thereby improving Fe nutrition in the shoot.  相似文献   

19.
Most studies on the reduction of disease incidence in soil treated with Trichoderma asperellum have focused on microbial interactions rather than on plant responses. This study presents conclusive evidence for the induction of a systemic response against angular leaf spot of cucumber (Pseudomonas syringae pv. lachrymans) following application of T. asperellum to the root system. To ascertain that T. asperellum was the only microorganism present in the root milieu, plants were grown in an aseptic hydroponic growth system. Disease symptoms were reduced by as much as 80%, corresponding to a reduction of 2 orders of magnitude in bacterial cell densities in leaves of plants pretreated with T. asperellum. As revealed by electron microscopy, bacterial cell proliferation in these plants was halted. The protection afforded by the biocontrol agent was associated with the accumulation of mRNA of two defense genes: the phenylpropanoid pathway gene encoding phenylalanine ammonia lyase (PAL) and the lipoxygenase pathway gene encoding hydroxyperoxide lyase (HPL). This was further supported by the accumulation of secondary metabolites of a phenolic nature that showed an increase of up to sixfold in inhibition capacity of bacterial growth in vitro. The bulk of the antimicrobial activity was found in the acid-hydrolyzed extract containing the phenolics in their aglycone form. High-performance liquid chromatography analysis of phenolic compounds showed a marked change in their profile in the challenged, preelicited plants relative to that in challenged controls. The results suggest that similar to beneficial rhizobacteria, T. asperellum may activate separate metabolic pathways in cucumber that are involved in plant signaling and biosynthesis, eventually leading to the systemic accumulation of phytoalexins.  相似文献   

20.
Phenolics, formed via a complex phenylpropanoid pathway, are important defensive agents in plants and are strongly affected by nitrogen (N) fertilization. Proanthocyanidins (PAs) are one possible endpoint of the phenylpropanoid pathway, and anthocyanidin reductase (ANR) represents a key enzyme in PA biosynthesis. In this study, the expression of silver birch (Betula pendula) anthocyanidin reductase BpANR was inhibited using the RNA interference (RNAi) method, in three consequent BpANR RNAi (ANRi birches) lines. The growth, the metabolites of the phenylpropanoid pathway, and the number of resin glands of the ANRi birches were studied when grown at two N levels. ANRi birches showed decreased growth and reduction in PA content, while the accumulation of total phenolics in both stems and leaves increased. Moreover, ANRi birches produced more resin glands than did wild‐type (WT) birches. The response of ANRi birches to N depletion varied compared with that of WT birches, and in particular, the concentrations of some phenolics in stems increased in WT birches and decreased in ANRi birches. Because the inhibition of PAs biosynthesis via ANR seriously affected birch growth and resulted in accumulation of the precursors, the native level of PAs in plant tissues is assumed to be the prerequisite for normal plant growth. This draws attention to the real plant developmental importance of PAs in plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号