首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
张蕊  赵钰  何红波  张旭东 《生态学杂志》2017,28(7):2379-2388
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

2.
大气CO2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(13C)技术研究土壤-植物系统的碳循环可阐明大气CO2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于13C自然丰度法或13C示踪技术研究大气CO2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.  相似文献   

3.
大气CO2浓度升高对土壤氮素转化过程产生重要影响,研究其变化有助于更好地预测陆地生态系统的固碳潜力.氮同位素自然丰度作为生态系统氮素循环过程的综合指标能够有效地指示CO2浓度升高对土壤氮素转化过程的影响.本研究采用开顶箱CO2 熏蒸法研究连续10年的大气CO2 浓度升高对我国东北地区蒙古栎及其土壤和微生物生物量碳、氮同位素自然丰度的影响.结果表明: 大气CO2浓度升高改变了土壤氮循环过程,增加了土壤微生物和植物叶片δ15N;促进了富13C土壤有机碳分解,中和了贫13C植物光合碳输入的效果,导致土壤可溶性有机碳和微生物碳δ13C在CO2升高条件下没有发生显著变化.这些结果表明,CO2浓度升高很可能促进了土壤有机质矿化过程,并加剧了系统氮限制的状态.  相似文献   

4.
大气CO2浓度升高对土壤氮素转化过程产生重要影响,研究其变化有助于更好地预测陆地生态系统的固碳潜力.氮同位素自然丰度作为生态系统氮素循环过程的综合指标能够有效地指示CO2浓度升高对土壤氮素转化过程的影响.本研究采用开顶箱CO2 熏蒸法研究连续10年的大气CO2 浓度升高对我国东北地区蒙古栎及其土壤和微生物生物量碳、氮同位素自然丰度的影响.结果表明: 大气CO2浓度升高改变了土壤氮循环过程,增加了土壤微生物和植物叶片δ15N;促进了富13C土壤有机碳分解,中和了贫13C植物光合碳输入的效果,导致土壤可溶性有机碳和微生物碳δ13C在CO2升高条件下没有发生显著变化.这些结果表明,CO2浓度升高很可能促进了土壤有机质矿化过程,并加剧了系统氮限制的状态.  相似文献   

5.
草地是陆地生态系统中最重要、分布最广的生态系统类型之一,对全球碳循环和气候调节有着重要的作用和效应.我国拥有极为丰富的草地资源,是巨大的陆地碳储存库,也是全球碳循环重要组成部分.干湿交替是土壤中普遍发生的自然现象,这种现象的发生可能会加速土壤的碳矿化过程、激增土壤呼吸以及影响微生物的活性和群落结构等.在全球变化日趋显著的背景下,降雨量、降雨强度以及降雨频率的变化将会加速土壤干湿交替进程,进而带来微生物活性、群落结构以及土壤呼吸的变化,并对全球碳循环过程产生重要影响.本文综述了近十年来国内外的相关文献,对干湿交替条件下,土壤释放CO2消耗碳源、土壤呼吸随时间的动态变化趋势以及土壤呼吸与微生物量、微生物活性和微生物群落结构之间的关系进行了分析和总结,以期为更好地理解干湿交替过程中草地生态系统土壤呼吸的微生物学响应机制,更准确地预测和评估未来的全球陆地生态系统的碳收支与气候变化提供一定的理论基础.  相似文献   

6.
陆地生态系统碳水循环的相互作用及其模拟   总被引:1,自引:1,他引:0  
回顾了近年来陆地生态系统碳循环与水循环相互作用及模拟方面的进展,指出了今后该领域研究的重点和发展方向。陆地生态系统碳水循环是两个相互耦合的生态学过程,二者及其相互作用均受气候、大气成分和人类活动的影响,并对气候系统具有强烈的反馈作用,因而成为当前全球变化研究的热点。近年来,国内外开展了大量观测和模拟研究,分析了碳循环和水循环在不同时空尺度上的相互作用及其对环境因子和土地利用/覆被变化的响应,发现土壤水分条件对陆地生态系统碳循环的主要分量(光合和呼吸)均具有显著作用,但作用的强度在不同的生态系统存在差异。精确模拟土壤水分动态及其对碳循环的影响是陆地生态系统碳收支估算的基础,碳循环和水循环的耦合模拟是生态和水文模型发展的方向。目前,大部分模型在模拟土壤水分动态时,未考虑地形对土壤水分水平移动的影响,土壤水分对土壤异养呼吸影响的模拟也多采用经验性模型,制约了碳收支模拟的精度,需要加以解决。  相似文献   

7.
脉冲降水对森林中土壤有机物矿化的影响:空间变化和控制因素 降水脉冲效应使土壤有机物在短时间内迅速分解并释放大量CO2到大气中。降水脉冲效应对生态系统的碳循环和土壤碳平衡的研究具有十分重要的意义,但它在森林土壤中的空间变化和基本机制仍不清楚。我们采集中国东部22个典型森林生态系统的土壤样品(0–10cm),研究模拟脉冲降水对土壤微生物呼吸速率的影响。模拟降水脉冲使土壤样品达到65%饱和含水量,以分钟为单位测量Rs,持续48 小时。研究结果显示,降水脉冲可以使微生物呼吸速率迅速增加1.70–38.12倍。微生物最大呼吸速率 (Rs-soil-max)、碳释放总量Rs (ARs-soil)和达到呼吸峰值的时间(TRs-soil-max)在不同的土壤中存在显著差异。此外,不同 气候区的脉冲效应也有明显不同。中温带的Rs-soil-max (11.701 µg C g−1 soil h−1)和ARs-soil (300.712 µg C g−1 soil)最高。土壤化学特性(总碳和总氮、pH值和氧化还原电位)和土壤粒径与森林土壤的脉冲效应密切相关,但土壤微生物的贡献较小。我们的研究结果表明,在大尺度范围内,脉冲变化短期内增加森林土壤中CO2的排放,并揭示了对这种变化影响最大的因素。这些发现为未来对森林生态系统的碳循环和调节全球生态系统碳循环的研究提供科学数据支持。  相似文献   

8.
源头溪流作为连接陆地与内陆河流的关键节点以及海-陆碳库交互的先锋界面,其水-气界面CO2排放对全球碳循环具有重要贡献。梳理源头溪流CO2的产排基本过程,明确其排放的时空特征及其主要影响因子有助于重新认识河流系统碳处理能力,是进一步明晰全球碳循环过程的重要内容。本研究探讨了源头溪流CO2的基本来源及过程(内源产生,外源输入);从年际、季节、昼夜的多维时间尺度,以及全球、区域、流域、生境的多维空间尺度对溪流CO2排放规律进行系统分析;进一步从气象因子、溪流结构特征、水文地貌因子、陆域环境因子和水体理化因子等方面总结了影响溪流CO2排放通量时空变异格局的关键因素;同时,分析了当前溪流CO2排放监测的主要方法及其适应条件,为溪流CO2监测的精确性提供参考。本文构建了溪流与陆地的碳耦合过程理论框架,呼吁溪流CO2排放在陆域碳平衡中具有不可忽视的贡献。最后,根据研究中存在的不足,提出未来的研究应着重关注以下几个方面:(1)不...  相似文献   

9.
开垦对黄河三角洲湿地净生态系统CO2交换的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来, 由于对湿地的不合理利用, 自然湿地被大面积地垦殖为农田, 导致湿地生态系统碳循环的模式发生改变, 从而影响了湿地生态系统碳汇功能。该研究通过涡度相关法, 对山东省东营市黄河三角洲芦苇(Phragmites australis)湿地和开垦多年的棉花(Gossypium spp.)农田的净生态系统CO2交换(NEE)进行了对比观测, 以探讨该地区典型生态系统NEE的变化规律及其影响因子, 揭示开垦对芦苇湿地NEE和碳汇功能的影响。结果表明: 在生长季, 湿地和农田生态系统NEE的日平均值各月均呈明显的“U”型变化曲线, 非生长季NEE的变幅很小。生长季湿地生态系统日最大净吸收值和释放值分别为16.04 g CO2·m-2·d-1(8月17日)和14.95 g CO2·m-2·d-1(8月9日); 农田生态系统日最大净吸收值和释放值分别为18.99 g CO2·m-2·d-1 (8月22日)和12.23 g CO2·m-2·d-1 (7月29日)。生长季白天两个生态系统NEE与光合有效辐射(PAR)之间呈直角双曲线关系; 非生长季NEE主要受土壤温度(Ts)的影响; 生态系统生长季夜间NEETs和土壤含水量(SWC)的共同影响; 湿地和农田的生态系统呼吸熵(Q10)分别为2.30和3.78。2011年生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的汇, 总净固碳量分别为780.95和647.35 g CO2·m-2, 开垦降低了湿地的碳吸收能力; 而在2011年非生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的源, CO2总释放量分别为181.90和111.55 g CO2·m-2。全年湿地和农田生态系统总净固碳量分别为599.05和535.80 g CO2·m-2。  相似文献   

10.
化石燃料的燃烧和城市化进程的加快导致大气中二氧化碳(CO2)和臭氧(O3)浓度日益升高, 大气气体浓度的变化会对植物个体和陆地生态系统结构与功能产生影响。CO2浓度升高增加了陆地生态系统碳汇能力, 而O3导致作物减产和生态系统固碳损失。自由空气中气体浓度增加(FACE)系统是最接近自然的一种模拟大气气体浓度增加对生态系统影响的研究平台, 已广泛应用于各种生态系统, 为理解陆地生态系统生态过程对全球变化的响应及评估未来情景的生态风险提供了重要科学依据。该文从FACE技术特点出发, 介绍了国内外建成的大型CO2/O3-FACE系统, 分析了FACE系统的不同布气方式在不同生态系统研究过程中的优点与缺点, 概述了全球FACE运行的现状和取得的主要成果, 并指出了FACE系统存在的主要问题和前沿研究方向。  相似文献   

11.
Large‐scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine‐scale processes including land use and land cover change into a large‐scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1‐km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. We estimate annual C losses from cropland harvest, forest clearcut and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net primary production increased by approximately 12.3 TgC/year, most of it was offset by increased C loss from harvest and natural disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of the overall ecosystem C sink did not increase over time. Our modeled results indicate the conterminous US C sink was about 30% smaller than previous modeling studies, but converged more closely with inventory data.  相似文献   

12.
To meet the increasing food and biofuel demand, the Midwestern United States has become one of the most intensively human‐disturbed hotspots, characterized by widespread cropland expansion and various management practices. However, the role of human activities in the carbon (C) cycling across managed landscape remains far from certain. In this study, based on state‐ and national census, field experiments, and model simulation, we comprehensively examined long‐term carbon storage change in response to land use and cover change (LUCC) and agricultural management in the Midwest from 1850 to 2015. We also quantified estimation uncertainties related to key parameter values. Model estimation showed LUCC led to a reduction of 1.35 Pg (with a range of 1.3–1.4 Pg) in vegetation C pool of the Midwest, yet agricultural management barely affected vegetation C change. In comparison, LUCC reduced SOC by 4.5 Pg (3.1 to 6.2 Pg), while agricultural management practices increased SOC stock by 0.9 Pg. Moreover, we found 45% of the study area was characterized by continuously decreasing SOC caused by LUCC, and SOC in 13% and 31% of the area was fully and partially recovered, respectively, since 1850. Agricultural management was estimated to increase the area of full recovery and partial recovery by 8.5% and 1.1%. Our results imply that LUCC plays an essential role in regional C balance, and more importantly, sustainable land management can be beneficial for strengthening C sequestration of the agroecosystems in the Midwestern US, which may serve as an important contributor to C sinks in the US.  相似文献   

13.
Yang  Yuanhe  Shi  Yue  Sun  Wenjuan  Chang  Jinfeng  Zhu  Jianxiao  Chen  Leiyi  Wang  Xin  Guo  Yanpei  Zhang  Hongtu  Yu  Lingfei  Zhao  Shuqing  Xu  Kang  Zhu  Jiangling  Shen  Haihua  Wang  Yuanyuan  Peng  Yunfeng  Zhao  Xia  Wang  Xiangping  Hu  Huifeng  Chen  Shiping  Huang  Mei  Wen  Xuefa  Wang  Shaopeng  Zhu  Biao  Niu  Shuli  Tang  Zhiyao  Liu  Lingli  Fang  Jingyun 《中国科学:生命科学英文版》2022,65(5):861-895

Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO2) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (?0.2±0.9) Pg C yr?1 (1 Pg=1015 g) in the 1960s to a sink of (1.9±1.1) Pg C yr?1 in the 2010s. By synthesizing the published data, we estimate terrestrial C sink of 0.20–0.25 Pg C yr?1 in China during the past decades, and predict it to be 0.15–0.52 Pg C yr?1 by 2060. The terrestrial C sinks are mainly located in the mid- and high latitudes of the Northern Hemisphere, while tropical regions act as a weak C sink or source. The C balance differs much among ecosystem types: forest is the major C sink; shrubland, wetland and farmland soil act as C sinks; and whether the grassland functions as C sink or source remains unclear. Desert might be a C sink, but the magnitude and the associated mechanisms are still controversial. Elevated atmospheric CO2 concentration, nitrogen deposition, climate change, and land cover change are the main drivers of terrestrial C sinks, while other factors such as fires and aerosols would also affect ecosystem C balance. The driving factors of terrestrial C sink differ among regions. Elevated CO2 concentration and climate change are major drivers of the C sinks in North America and Europe, while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China. For future studies, we recommend the necessity for intensive and long term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.

  相似文献   

14.
Accurately assessing the carbon sink and spatial distribution pattern of China's terrestrial ecosystems is of great significance to the implementation of climate change and carbon neutrality strategy. However, the views of various studies are still very controversial due to the differences in carbon sink estimation methods and data sources. In this study, vegetation net primary productivity (NPP) and ecosystem heterotrophic respiration (Rh) estimation models were constructed based on machine learning methods by fusing multisource data, such as remote sensing and ground observation data. The magnitude and spatial pattern of carbon sink in China from 2000 to 2018 were then revealed, and the carbon sink capacity of various ecosystems was quantitatively assessed. The main conclusions include the following: (1) The use of scale-matched carbon input and output data can help reduce the system error in carbon sink estimation. (2) China's terrestrial ecosystem carbon sink since the twenty-first century is approximately 0.458 Pg C/yr, which is equivalent to 22.72% of China's anthropogenic carbon emissions. (3) Deciduous forest has a higher carbon sink capacity than evergreen forest, while coniferous forest has a more stable carbon sink capacity than broad-leaved forest. The magnitude and spatial distribution of carbon sink in China reported in this study provides a scientific reference for achieving carbon neutrality and sustainable development.  相似文献   

15.
中国陆地生态系统碳源/汇整合分析   总被引:4,自引:0,他引:4  
赵宁  周蕾  庄杰  王永琳  周稳  陈集景  宋珺  丁键浠  迟永刚 《生态学报》2021,41(19):7648-7658
国家尺度陆地生态系统碳收支及其循环过程的研究对于提升地球系统科学与全球变化科学的科技创新能力、提高我国参与应对全球气候变化国际行动和维护国家利益的话语权、保障国家生态安全和改进生态系统管理都具有重要意义。近年来,我国已经在气候变化与陆地生态系统碳循环领域开展了大量的研究工作,主要包括国家清查、生态系统模型模拟、大气反演等手段。然而,由于大尺度陆地生态系统碳源/汇的估算存在很大的不确定性,目前尚未形成国家尺度的陆地生态系统碳源/汇的整合分析。通过搜集已发表的关于中国陆地生态系统及其组分碳源/汇的59篇文献,整合国家清查、生态系统模型模拟、大气反演3种研究手段,分析中国陆地生态系统碳源/汇大小以及时间尺度上的动态变化。结果表明,在1960s-2010s期间中国陆地生态系统碳汇整体呈上升趋势,平均为(0.213±0.030)Pg C/a,其中森林、草地、农田和灌木生态系统碳汇分别为(0.101±0.023)Pg C/a、(0.032±0.007)Pg C/a、(0.043±0.010)Pg C/a和(0.028±0.010)Pg C/a。森林生态系统中的植被碳汇远大于土壤碳汇,然而这种格局在草地和农田生态系统却相反,而且1960s-2010s期间中国主要植被类型的生态系统碳汇总体上随时间呈增加趋势。融合多源数据(地面观测、激光雷达、卫星遥感等)、多尺度数据(样地尺度、站点尺度、区域尺度)以及多手段数据(联网观测、森林清查、模型模拟),有助于全面准确地评估中国陆地生态系统碳源/汇及其对气候变化的响应。  相似文献   

16.
CO2失汇与北半球中高纬度陆地生态系统的碳汇   总被引:47,自引:0,他引:47       下载免费PDF全文
 化石燃料消耗及热带林破坏导致约7.0PgC·a-1(1Pg=109t)的CO2向大气排放,其中3.0~3.4PgC·a-1的CO2被用于大气CO2浓度的升高,约2.0PgC·a-1的CO2被海洋吸收,而陆地生物圈被认为是CO2净吸收与净排放基本达到平衡。因此,在人工源CO2中,尚有1.6~2.0PgC·a-1的CO2去向不明。这就是著名的CO2失汇之谜。大气成分监测、CO2通量测定以及模型模拟等方面的研究都表明,北半球陆地生态系统是一个重要的碳汇,但其值存在很大的不确定性,且具有较大的时空变化。全球温暖化、CO2施肥效应,氮和磷沉降的增加以及人工植被的扩大是形成碳汇的主要因素。为减少碳汇估计值的不确定性,除加强长期定位监测、改良现有估测模型外,重视研究土壤圈在碳循环中的作用至关重要。  相似文献   

17.
陆地碳循环研究中的模型方法   总被引:23,自引:3,他引:20  
陆地碳循环是全球变化研究中的重要内容,碳循环模型已成为研究陆地碳循环的必要方法.其中气候变化、大气CO2浓度上升以及人类活动引起的土地利用和土地覆盖变化导致陆地生态系统在结构、功能、组成和分布等方面的变化及其反馈关系对陆地碳循环的影响是模型模拟的关键问题.生物地理模型和生物地球化学模型是碳循环模型的两大类型,建模方法、模型性质、特点和应用范围各异.碳循环模型的发展方向是综合两类模型的特点,建立全球动态碳循环模型.  相似文献   

18.
ABSTRACT Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y−1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y−1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described.  相似文献   

19.
稳定性同位素技术和Keeling曲线法是现代生态学研究的重要手段和方法之一。稳定性同位素能够整合生态系统复杂的生物学、生态学和生物地球化学过程在时间和空间尺度上对环境变化的响应。Keeling曲线法是以生物过程前后物质平衡理论为基础,将CO2或H2O的同位素组成(δDδ13C或δ18O)与其对应浓度测量结合起来,将生态系统净碳通量区分为光合固定和呼吸释放通量,或将整个生态系统水分蒸散区分为植物蒸腾和土壤蒸发。在全球尺度上,稳定性同位素技术、Keeling曲线法与全球尺度陆地生态系统模型相结合,还可区分陆地生态系统和海洋生态系统对全球碳通量的贡献以及不同植被类型(C3或C4)在全球CO2同化量中所占的比例。然而,生态系统的异质性使得稳定性同位素技术和Keeling曲线法从冠层尺度外推到生态系统、区域或全球尺度时存在有一定程度的不确定性。此外,取样时间、地点的选取也会影响最终的研究结果。尽管如此,随着分析手段的不断精确和研究方法的日趋完善,稳定性同位素技术和Keeling曲线法与其它测量方法(如微气象法)的有机结合将成为未来陆地生态系统碳/水交换研究的重要手段和方法之一。  相似文献   

20.
Anthropogenic nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application, alters biogeochemical cycling of ecosystems in a way that leads to altered flux of biogenic greenhouse gases (GHGs). Our meta-analysis of 313 observations across 109 studies evaluated the effect of N addition on the flux of three major GHGs: CO2, CH4 and N2O. The objective was to quantitatively synthesize data from agricultural and non-agricultural terrestrial ecosystems across the globe and examine whether factors, such as ecosystem type, N addition level and chemical form of N addition influence the direction and magnitude of GHG fluxes. Results indicate that N addition increased ecosystem carbon content of forests by 6%, marginally increased soil organic carbon of agricultural systems by 2%, but had no significant effect on net ecosystem CO2 exchange for non-forest natural ecosystems. Across all ecosystems, N addition increased CH4 emission by 97%, reduced CH4 uptake by 38% and increased N2O emission by 216%. The net effect of N on the global GHG budget is calculated and this topic is reviewed. Most often N addition is considered to increase forest C sequestration without consideration of N stimulation of GHG production in other ecosystems. However, our study indicated that although N addition increased the global terrestrial C sink, the CO2 reduction could be largely offset (53–76%) by N stimulation of global CH4 and N2O emission from multiple ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号