首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Splicing of tRNA precursors in extracts of Saccharomyces cerevisiae requires the action of two enzymes: a site specific endonuclease and a tRNA ligase. The tRNA ligase contains three distinct enzymatic activities: a polynucleotide kinase, a cyclic phosphodiesterase, and an RNA ligase. The polypeptide also has a high affinity pre-tRNA binding site based on its ability to form stable complexes with pre-tRNA substrates. To investigate the organization of functional enzymatic and binding elements within the polypeptide a series of defined tRNA ligase gene deletions were constructed and corresponding proteins were expressed in Escherichia coli as fusions with bacterial dihydrofolate reductase (DHFR). The DHFR/ligase derivative proteins were then efficiently purified by affinity chromatography. The complete ligase fusion protein retained enzymatic and binding activities which were unaffected by the presence of the DHFR segment. Examination of tRNA ligase deletion derivatives revealed that the amino-terminal region was required for adenylylation, while the carboxyl-terminal region was sufficient for cyclic phosphodiesterase activity. Deletions within the central region affected kinase activity. Pre-tRNA binding activity was not strictly correlated with a distinct enzymatic domain. A DHFR/ligase-derived protein lacking kinase activity efficiently joined tRNA halves. We postulate that this variant utilizes a novel RNA ligation mechanism.  相似文献   

2.
3.
Related domains containing the purine NTP-binding sequence pattern have been revealed in two enzymes involved in tRNA processing, yeast tRNA ligase and phage T4 polynucleotide kinase, and in one of the major proteins of mammalian nerve myelin sheath, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase). It is suggested that, similarly to the tRNA processing enzymes, CNPase possesses polynucleotide kinase activity, in addition to the phosphohydrolase one. It is speculated that CNPase may be an authentic mammalian polynucleotide kinase recruited as a structural component of the myelin sheath, analogously to the eye lens crystallins. Significant sequence similarity was revealed also between the N-terminal regions of yeast tRNA ligase and phage T4 RNA ligase. A tentative scheme of the domainal organizations for the three complex enzymes is proposed. According to this model, tRNA ligase contains at least three functional domains, in the order: N-ligase-kinase-phosphohydrolase-C, whereas polynucleotide kinase and CNPase encompass only the two C-terminal domains in the same order.  相似文献   

4.
N K Tanner  M M Hanna  J Abelson 《Biochemistry》1988,27(24):8852-8861
Yeast tRNA ligase, from Saccharomyces cerevisiae, is one of the protein components that is involved in the splicing reaction of intron-containing yeast precursor tRNAs. It is an unusual protein because it has three distinct catalytic activities. It functions as a polynucleotide kinase, as a cyclic phosphodiesterase, and as an RNA ligase. We have studied the binding interactions between ligase and precursor tRNAs containing two photoreactive uridine analogues, 4-thiouridine and 5-bromouridine. When irradiated with long ultraviolet light, RNA containing these analogues can form specific covalent bonds with associated proteins. In this paper, we show that 4-thiouridine triphosphate and 5-bromouridine triphosphate were readily incorporated into a precursor tRNA(Phe) that was synthesized, in vitro, with bacteriophage T7 RNA polymerase. The analogue-containing precursor tRNAs were authentic substrates for the two splicing enzymes that were tested (endonuclease and ligase), and they formed specific covalent bonds with ligase when they were irradiated with long-wavelength ultraviolet light. We have determined the position of three major cross-links and one minor cross-link on precursor tRNA(Phe) that were located within the intron and near the 3' splice site. On the basis of these data, we present a model for the in vivo splicing reaction of yeast precursor tRNAs.  相似文献   

5.
Joining of tRNA halves during splicing in extracts of Saccharomyces cerevisiae requires each of the three enzymatic activities associated with the tRNA ligase polypeptide. Joining is most efficient for tRNA as opposed to oligonucleotide substrates and is sensitive to single base changes at a distance from splice sites suggesting considerable specificity. To examine the basis for this specificity, binding of ligase to labeled RNA substrates was measured by native gel electrophoresis. Ligase bound tRNA halves with an association constant 1600-fold greater than that for a nonspecific RNA. Comparison of binding of a series of tRNA processing intermediates revealed that tRNA-structure, particularly in the region around the splice sites, contributes to specific binding. Finally, the ligase was shown to form multiple, discrete complexes with tRNA substrates. The basis for recognition by ligase and its role in a tRNA processing pathway are discussed.  相似文献   

6.
Wheat RNA ligase contains 5′-hydroxyl kinase, 2′,3′-cyclic phosphate 3′-phosphodiesterase, and 5′-phosphate 2′-phosphate-3′-hydroxyl RNA ligase activities in a 110-kDa polypeptide. Taking advantage of a wheat cell-free protein production system, we prepared various fragments containing a part of the enzyme. The method allowed us to check the activities of the fragments rapidly, eliminating the time-consuming cloning and sequencing steps for the expression of the fragment proteins. The results showed that each of the three activities can be assigned to a non-overlapping domain that does not require the presence of the other part(s) of the enzyme for its activity. This contrasts to the case of yeast tRNA ligase, in which the central kinase domain has been suggested to require to be tethered to one of the flanking domains for its activity.  相似文献   

7.
Pre-tRNA splicing is an essential process in all eukaryotes. It requires the concerted action of an endonuclease to remove the intron and a ligase for joining the resulting tRNA halves as studied best in the yeast Saccharomyces cerevisiae. Here, we report the first characterization of an RNA ligase protein and its gene from a higher eukaryotic organism that is an essential component of the pre-tRNA splicing process. Purification of tRNA ligase from wheat germ by successive column chromatographic steps has identified a protein of 125 kDa by its potentiality to covalently bind AMP, and by its ability to catalyse the ligation of tRNA halves and the circularization of linear introns. Peptide sequences obtained from the purified protein led to the elucidation of the corresponding proteins and their genes in Arabidopsis and Oryza databases. The plant tRNA ligases exhibit no overall sequence homologies to any known RNA ligases, however, they harbour a number of conserved motifs that indicate the presence of three intrinsic enzyme activities: an adenylyltransferase/ligase domain in the N-terminal region, a polynucleotide kinase in the centre and a cyclic phosphodiesterase domain at the C-terminal end. In vitro expression of the recombinant Arabidopsis tRNA ligase and functional analyses revealed all expected individual activities. Plant RNA ligases are active on a variety of substrates in vitro and are capable of inter- and intramolecular RNA joining. Hence, we conclude that their role in vivo might comprise yet unknown essential functions besides their involvement in pre-tRNA splicing.  相似文献   

8.
During their maturation step, transfer RNAs (tRNAs) undergo excision of their introns by specific splicing. Although tRNA splicing is a molecular event observed in all domains of life, the machinery of the ligation reaction has diverged during evolution. Yeast tRNA ligase 1 (TRL1) is a multifunctional protein that alone catalyzes RNA ligation in tRNA splicing, whereas three molecules [RNA ligase (RNL), Clp1, and PNK/CPDase] are necessary for RNA ligation in tRNA splicing in amphioxi. RNA ligation not only occurs in tRNA splicing, but also in yeast HAC1 mRNA splicing and in animal X-box binding protein 1 (XBP1) mRNA splicing under conditions of endoplasmic reticulum (ER) stress. Yeast TRL1 is known to function as an RNA ligase for HAC1 mRNA splicing, whereas the RNA ligase for XBP1 mRNA splicing is unknown in animals. We examined whether yeast and amphioxus RNA ligases for tRNA splicing function in RNA ligation in mammalian XBP1 splicing. Both RNA ligases functioned in RNA ligation in mammalian XBP1 splicing in vitro. Interestingly, Clp1, and PNK/CPDase were not necessary for exon–exon ligation in XBP1 mRNA by amphioxus RNL. These results suggest that RNA ligase for tRNA splicing might therefore commonly function as an RNA ligase for XBP1 mRNA splicing.  相似文献   

9.
T4 phage polynucleotide kinase (PNK) was identified over 35 years ago and has become a staple reagent for molecular biologists. The enzyme displays 5'-hydroxyl kinase, 3'-phosphatase, and 2',3'-cyclic phosphodiesterase activities against a wide range of substrates. These activities modify the ends of nicked tRNA generated by a bacterial response to infection and facilitate repair by T4 RNA ligase. DNA repair enzymes that share conserved motifs with PNK have been identified in eukaryotes. PNK contains two functionally distinct structural domains and forms a homotetramer. The C-terminal phosphatase domain is homologous to the L-2-haloacid dehalogenase family and the N-terminal kinase domain is homologous to adenylate kinase. The active sites have been characterized through structural homology analyses and visualization of bound substrate.  相似文献   

10.
Changes in phenylalanyl-tRNA synthetase (L-phenylalanine : tRNAPhe ligase, EC 6.1.1.20) and leucyl-tRNA synthetase (L-leucine : tRNALeu ligase. EC 6.1.1.4) activities were studied during the growth cycle of Tetrahymena pyriformis. High levels of charged tRNA observed during exponential growth were associated with elevated aminoacyl-tRNA synthetase activities. Low levels of charges tRNA in the stationary phase culture were associated with decreased aminoacyl-tRNA synthethase activities together with a concomitant accumulation of factor(s) which inhibited the enzyme activities. The inhibitory factor(s) has been partially purified and evidence is presented to rule out RNA, RNAases, proteases and ATPases as the responsible inhibitory factor(s) of the aminoacyl-tRNA synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号