首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pro-oxidant and anti-oxidant systems and their levels have significant roles in occlusive vascular diseases. In the present communication, we have measured the levels of some representative anti-oxidant enzymes in the blood of the patients of myocardial infarction after reperfusion and compared them to age and sex matched healthy persons. Our findings show that the activities of anti-oxidant enzymes (viz. SOD, catalase and glutathione reductase) are significantly decreased whereas there is significant increase in the levels of malonaldialdehyde (a marker of free radical-mediated damage) in the patients. The findings point out that ischemic myocardial disorders are associated with excessive free radical generation and free radical-mediated damage of lipids.  相似文献   

2.
The effect of reperfusion of patients with myocardial infarction on the levels of some anti-oxidant enzymes, total thiols, malondialdehyde formation in erythrocytes and plasma ascorbate levels have been investigated. Significantly decreased activities of catalase and superoxide dismutase and decreased levels of total thiols in RBC's and ascorbic acid in plasma suggest that reperfusion of the infarcted myocardium leads to oxidative stress conditions wherein anti-oxidant mechanisms become less effective in coping with the oxidative insult. This view is further supported by the observation that in the post reperfused patients there is a highly significant enhancement in the levels of malondialdehyde.  相似文献   

3.
Newborn children can be exposed to high oxygen levels (hyperoxia) for hours to days during their medical and/or surgical management, and they also can have poor myocardial function and hemodynamics. Whether hyperoxia alone can compromise myocardial function and hemodynamics in the newborn and whether this is associated with oxygen free radical release that overwhelms naturally occurring antioxidant enzymes leading to myocardial membrane injury was the focus of this study. Yorkshire piglets were anesthetized with pentobarbital sodium (65 mg/kg), intubated, and ventilated to normoxia. Once normal blood gases were confirmed, animals were randomly allocated to either 5 h of normoxia [arterial Po(2) (Pa(O(2))) = 83 +/- 5 mmHg, n = 4] or hyperoxia (Pa(O(2)) = 422 +/- 33 mmHg, n = 6), and myocardial functional and hemodynamic assessments were made hourly. Left ventricular (LV) biopsies were taken for measurements of antioxidant enzyme activities [superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT)] and malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) as an indicator of oxygen free radical-mediated membrane injury. Hyperoxic piglets suffered significant reductions in contractility (P < 0.05), systolic blood pressure (P < 0.03), and mean arterial blood pressure (P < 0.05). Significant increases were seen in heart rate (P < 0.05), whereas a significant 11% (P < 0.05) and 61% (P < 0.001) reduction was seen in LV SOD and GPx activities, respectively, after 5 h of hyperoxia. Finally, MDA and 4-HNE levels were significantly elevated by 45% and 38% (P < 0.001 and P = 0.02), respectively, in piglets exposed to hyperoxia. Thus, in the newborn, hyperoxia triggers oxygen free radical-mediated membrane injury together with an inability of the newborn heart to upregulate its antioxidant enzyme defenses while impairing myocardial function and hemodynamics.  相似文献   

4.
Occurrence of oxidative stress during myocardial reperfusion   总被引:1,自引:0,他引:1  
Reperfusion, without doubt, is the most effective way to treat the ischaemic myocardium. Late reperfusion may however cause further damage. Myocardial production of oxygen free radicals above the neutralizing capacity of the myocytes is an important cause of this reperfusion damage. There is evidence that prolonged ischaemia reduces the naturally occurring defence mechanisms of the heart against oxygen free radicals, particularly mitochondrial manganese superoxide dismutase, and intracellular pool of reduced glutathione. Consequently, reperfusion results in a severe oxidative damage, as evidenced by tissue accumulation and release of oxidized glutathione.An oxygen free radical-mediated impairment of mechanical function also occurs during reperfusion of human heart. In fact we observed during surgical reperfusion of coronary artery disease (CAD) patients, a prolonged and sustained release of oxidized glutathione;the degree of oxidative stress was inversely correlated with recovery of mechanical and haemodynamic function. These findings represent the rationale for therapeutic interventions which increase the cellular antioxidant capacities and improve the efficacy of myocardial reperfusion.  相似文献   

5.
Oxidative stress is a core abnormality responsible for disease progression in nonalcoholic fatty liver disease (NAFLD). However, the pathways that contribute to oxidative damage in vivo are poorly understood. Our aims were to define the circulating profile of lipid oxidation products in NAFLD patients, the source of these products, and assess whether their circulating levels reflect histological changes in the liver. The levels of multiple structurally specific oxidized fatty acids, including individual hydroxy-eicosatetraenoic acids (HETE), hydroxy-octadecadenoic acids (HODE), and oxo-octadecadenoic acids (oxoODE), were measured by mass spectrometry in plasma at time of liver biopsy in an initial cohort of 73 and a validation cohort of 49 consecutive patients. Of the markers monitored, 9- and 13-HODEs and 9- and 13-oxoODEs, products of free radical-mediated oxidation of linoleic acid (LA), were significantly elevated in patients with nonalcoholic steatohepatitis (NASH), compared with patients with steatosis. A strong correlation was revealed between these oxidation products and liver histopathology (inflammation, fibrosis, and steatosis). Further analyses of HODEs showed equivalent R and S chiral distribution. A risk score for NASH (oxNASH) was developed in the initial clinical cohort and shown to have high diagnostic accuracy for NASH versus steatosis in the independent validation cohort. Subjects with elevated oxNASH levels (top tertile) were 9.7-fold (P < 0.0001) more likely to have NASH than those with low levels (bottom tertile). Collectively, these findings support a key role for free radical-mediated linoleic acid oxidation in human NASH and define a risk score, oxNASH, for noninvasive detection of the presence of NASH.  相似文献   

6.
Abstract

Altered mitochondrial function and free radical-mediated tissue damage have been suggested as an important pathological event in isoproterenol (ISO)-induced cardiotoxicity. This study was undertaken to know the preventive effect of morin on mitochondrial damage in ISO-induced cardiotoxicity in male Wistar rats. Myocardial infarction (MI) in rats was induced by ISO (85 mg/kg) at an interval of 24 hours for 2 days. Morin was given to rats as pre-treatment for 30 days orally using an intragastric tube. ISO-treated rats showed a significant elevation of mitochondrial thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (HP) level and pre-treatment with morin significantly prevented the increase of TBARS and HP level to near normality. The level of enzymic and non-enzymic antioxidants was decreased significantly in ISO-treated rats and pre-treatment with morin significantly increased the levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and reduced glutathione to normality. The activities of mitochondrial enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase were decreased significantly in ISO-treated myocardial ischemic rats and upon pre-treatment with morin restored these enzymes activity to normality. In addition, the decreased activities of cytochrome-C oxidase and NADH-dehydrogenases were observed in ISO-treated rats and pre-treatment with morin prevented the activities of cytochrome-C oxidase and NADH-dehydrogenase to normality. Pre-treatment with morin favorably restored the biochemical and functional parameters to near normal indicating morin to be a significant protective effect on cardiac mitochondrial function against ISO-induced MI in rats.  相似文献   

7.
Lipid peroxidation is a major outcome of free radical-mediated injury to brain, where it directly damages membranes and generates a number of oxidized products. Some of the chemically and metabolically stable oxidation products are useful in vivo biomarkers of lipid peroxidation. These include the isoprostanes (IsoPs) and isofurans (IsoFs), derived from arachidonic acid (AA), and neuroprostanes (NeuroPs), derived from docosahexaenoic acid (DHA). We have shown increased levels of IsoPs, NeuroPs, and IsoFs in diseased regions of brain from patients who died from advanced Alzheimer's disease (AD) or Parkinson's disease (PD). Increased cerebrospinal fluid (CSF) levels of IsoPs are present in patients with AD or Huntington's disease (HD) early in the course of their illness, and CSF IsoPs may improve the laboratory diagnostic accuracy for AD. In contrast, quantification of IsoPs in plasma and urine of AD patients has yielded inconsistent results. These results indicate that brain lipid peroxidation is a potential therapeutic target early in the course of AD and HD, that CSF IsoPs may aid in the assessment of anti-oxidant experimental therapeutics and laboratory diagnosis of AD.  相似文献   

8.
The potential to cryopreserve embryonic axes of desiccation-sensitive (recalcitrant) seeds is limited by damage during the desiccation necessary for low temperature survival, but the basis of this injury and how to reduce it is not well understood. The effects of drying rate on the viability, respiratory metabolism and free radical-mediated processes were therefore investigated during dehydration of Quercus robur L. embryonic axes. Viability, assessed by evidence of germination and tetrazolium staining, showed a sharp decline at 0.27 and 0.8 g/g during rapid (<12 h) or slow (3 d) dehydration, respectively. Rapid dehydration therefore lowered the critical water content for survival. At any given water content rapid dehydration was associated with higher activities of the free radical processing enzymes, superoxide dismutase, catalase and glutathione reductase and lower levels of hydroperoxide and membrane damage. Rapid dehydration was also associated with lower malate dehydrogenase activity, and a reduced decline in phosphofructokinase activity and in levels of the oxidized form of nicotinamide dinucleotide. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in hydrated storage after 3 d. The results presented are consistent with rapid dehydration reducing the accumulation of damage resulting from desiccation induced aqueous-based deleterious reactions.  相似文献   

9.
Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation, which is one of the major mechanisms of secondary traumatic brain injury (TBI), has also been reported in pediatric head trauma. In the present study, we aimed to demonstrate the effect of melatonin, which is a potent free radical scavenger, on brain oxidative damage in 7-day-old rat pups subjected to contusion injury. Whereas TBI significantly increased thiobarbituric acid reactive substances (TBARS) levels, there was no compensatory increase in the antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) 24 hours after TBI in 7-day-old rats. Melatonin administered as a single dose of 5 mg/kg prevented the increase in TBARS levels in both non-traumatized and traumatized brain hemispheres. In conclusion, melatonin protects against oxidative damage induced by TBI in the immature brain.  相似文献   

10.
Abstract : One of the leading etiologic hypotheses regarding Alzheimer's disease (AD) is the involvement of free radical-mediated oxidative stress in neuronal degeneration. Although several recent studies show an increase in levels of brain DNA oxidation in both aging and AD, there have been no studies of levels of markers of DNA oxidation in ventricular CSF. This is a study of levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), the predominant marker of oxidative DNA damage, in intact DNA and as the "free" repair product that results from repair mechanisms. Free 8-OHdG was isolated from CSF from nine AD and five age-matched control subjects using solidphase extraction columns and measured using gas chromatography/mass spectrometry with selective ion monitoring. Intact DNA was isolated from the same samples and the levels of 8-OHdG determined in the intact structures. Quantification of results was carried out using stable isotope-labeled 8-OHdG. By using this sensitive methodology, statistically significant elevations ( p < 0.05) of 8-OHdG were observed in intact DNA in AD subjects compared with age-matched control subjects. In contrast, levels of free 8-OHdG, removed via repair mechanisms, were depleted significantly in AD samples ( p < 0.05). Our results demonstrate an increase in unrepaired oxygen radical-mediated damage in AD DNA as evidenced by the increased presence of 8-OHdG in intact DNA and decreased concentrations of the free repair product. These data suggest that the brain in AD may be subject to the double insult of increased oxidative stress, as well as deficiencies in repair mechanisms responsible for removal of oxidized bases.  相似文献   

11.
The concentration of the anti-oxidant enzymes catalase (CAT), peroxidases (POD) and superoxide dismutases (SOD) in different blood fractions, and the chromosomal sensitivity of lymphocytes to bleomycin-induced free radicals (expressed as frequency of dicentrics per bleomycin dose) were analyzed in 10 normal human donors. Our results demonstrate that the physiological concentration of the enzymes as well as the chromosomal sensitivity exhibited a wide interindividual variability. An inverse correlation between chromosomal sensitivity to bleomycin and SOD concentration in whole blood, plasma and red cells was found. On the other hand, no correlation between the yield of bleomycin-induced dicentrics and the concentration of CAT or POD was detected in any of the blood fractions analyzed. These findings suggest that the concentration of SOD may play an important role in the cellular susceptibility to DNA damage by free radicals.  相似文献   

12.
We tested a working hypothesis that stress genes and anti-oxidant enzyme machinery are induced by the organophosphate compound dichlorvos in a non-target organism. Third instar larvae of Drosophila melanogaster transgenic for hsp70 were exposed to 0.1 to 100.0 ppb dichlorvos and 5.0 mM CuSO(4) (an inducer of oxidative stress and stress genes) and hsp70, and activities of acetylcholinesterase (AchE), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) product were measured. The study was further extended to examine tissue damage, if any, under such conditions. A concentration- and time-dependent increase in hsp70 and anti-oxidant enzymes was observed in the exposed organism as compared to control. A comparison of stress gene expression with SOD, CAT activities and LPO product under similar experimental conditions revealed that induction of hsp70 precedes the anti-oxidant enzyme activities in the exposed organism. Further, concomitant with a significant inhibition of AChE activity, significant induction of hsp70 was observed following chemical exposure. Mild tissue damage was observed in the larvae exposed to 10.0 ppb dichlorvos for 48 h when hsp70 expression reaches plateau. Dichlorvos at 0.1 ppb dietary concentration did not evoke significant hsp70 expression, anti-oxidant enzymes and LPO and AchE inhibition in the exposed organism, and thereby, was found to be non-hazardous to D. melanogaster. Conversely, 1.0 ppb of the test chemical stimulated a significant induction of hsp70 and anti-oxidant enzymes and significant inhibition of AchE; hence this concentration of test chemical was hazardous to the organism. The present study suggests that (a) both stress genes and anti-oxidant enzymes are stimulated as indices of cellular defense against xenobiotic hazard in D. melanogaster with hsp70 being proposed as first-tier bio-indicator of cellular hazard, (b) 0.1 ppb of the test chemical may be regarded as No Observed Adverse Effect Level (NOAEL), and 1.0 ppb dichlorvos as Low Observed Adverse Effect Level (LOAEL).  相似文献   

13.
Marine invertebrates have evolved multiple responses to naturally variable environmental oxygen, all aimed at either maintaining cellular oxygen homeostasis or limiting cellular damage during or after hypoxic or hyperoxic events. We assessed organismal (rates of oxygen consumption and ammonia excretion) and cellular (heat shock protein expression, anti-oxidant enzymes) responses of juvenile and adult abalone exposed to low (~ 83% of saturation), intermediate (~ 95% of saturation) and high (~ 115% of saturation) oxygen levels for one month. Using the Comet assay, we measured DNA damage to determine whether the observed trends in the protective responses were sufficient to prevent oxidative damage to cells. Juveniles were unaffected by moderately hypoxic and hyperoxic conditions. Elevated basal rates of superoxide dismutase, glutathione peroxidase and catalase were sufficient to prevent DNA fragmentation and protein damage. Adults, with their lower basal rate of anti-oxidant enzymes, had increased DNA damage under hypoxic and hyperoxic conditions, indicating that the antioxidant enzymes were unable to prevent oxidative damage under hypoxic and hyperoxic conditions. The apparent insensitivity of juvenile abalone to decreased and increased oxygen might be related to their life history and development in algal and diatom biofilms where they are exposed to extreme diurnal fluctuations in dissolved oxygen levels.  相似文献   

14.
Cyclooxygenases (COX) are a family of enzymes involved in the biosynthesis of prostaglandin (PG) and thromboxanes. The inducible enzyme cyclooxygenase-2 (COX-2) is the major isoform found in normal brain, where it is constitutively expressed in neurons and is further up-regulated during several pathological events, including seizures and ischaemia. Emerging evidence suggests that COX-2 is implicated in excitotoxic neurodegenerative phenomena. It remains unclear whether PGs or other products associated to COX activity take part in these processes. Indeed, it has been suggested that reactive oxygen species, produced by COX, could mediate neuronal damage. In order to obtain direct evidence of free radical production during COX activity, we undertook an in vivo microdialysis study to monitor the levels of PGE(2) and 8-epi-PGF(2alpha) following infusion of N-methyl-D-aspartate (NMDA). A 20-min application of 1 mm NMDA caused an immediate, MK-801-sensitive increase of both PGE(2) and 8-epi-PGF(2alpha) basal levels. These effects were largely prevented by the specific cytosolic phospholipase A(2) (cPLA(2) ) inhibitor arachidonyl trifluoromethyl ketone (ATK), by non- selective COX inhibitors indomethacin and flurbiprofen or by the COX-2 selective inhibitor NS-398, suggesting that the NMDA-evoked prostaglandin synthesis and free radical-mediated lipid peroxidation are largely dependent on COX-2 activity. As several lines of evidence suggest that prostaglandins may be potentially neuroprotective, our findings support the hypothesis that free radicals, rather than prostaglandins, mediate the toxicity associated to COX-2 activity.  相似文献   

15.
Alzheimer's disease (AD) is a multifactorial disorder characterized by the presence of amyloid plaques and neurofibrillary tangles (NFTs). Rare early-onset forms of AD are associated with autosomal dominant mutations in the amyloid precursor protein gene, presenilin 1 gene, or presenilin 2 gene. The late-onset form of the disease (LOAD) is the most common form. The causes of LOAD are not yet clarified, but several environmental and genetic risk factors have been identified. Numerous studies have highlighted a role for free radical-mediated injury to brain regions of this illness. In addition, studies from mild cognitive impairment patients suggest that oxidative stress is an early event in the pathogenesis of AD. The associations between these markers of free radical damage and the pathogenic cascades involved in AD are complex. Over the past 2 decades, a number of mouse models have been created to recapitulate the major neuropathological hallmarks of AD, namely amyloid plaques and NFTs. These mice recapitulate many, although not all, of the key features of AD. Some strains of transgenic mice develop amyloid plaques, some accumulate NFTs, and some do both. Here we review the evidence for increased free radical-mediated damage to the brain with particular attention to the stage of the disease in various transgenic models of AD related to the amyloid-β cascade.  相似文献   

16.
17.
In acute coronary syndromes such as unstable angina and myocardial infarction, serum concentration of brain natriuretic peptide, a cardiac hormone with potent vasodilatatory, natriuretic and diuretic activities, is elevated. Little is known about the effect of elevated BNP plasma concentration on free radical-mediated tissue damage in these states. We investigated the influence of human BNP 32 and its fragment BNP 7-32 on the production of superoxide anion by PMN, a major cause for myocardial damage. Although BNP showed itself no stimulatory potential on superoxide anion release in PMN, it enhanced significantly the stimulatory potential of cell stimuli such as fMLP or phorbol 12-myristate 13-acetate (PMA) in PMN. Thus our data show that the cardiac-derived hormone BNP influences an important function of PMN. This 'priming' effect of BNP on PMN may contribute to the tissue damage occuring during acute coronary syndromes.  相似文献   

18.
BACKGROUND: Increased dietary intake of polyunsaturated fatty acids (PUFAs) is known to be associated with a decrease in the incidence of peptic ulcer disease possibly due to increase in the synthesis of prostaglandins. But, it is also likely that conversion of PUFAs to PGs may not always be required for gastric mucosal protection. Present study was designed to study the role of PUFAs in pathobiology of steroid induce gastric damage in rats. METHODS: Wistar rats were treated with 5 mg/kg bodyweight of dexamethasone to induce gastric mucosal ulcers. Effects of PUFAs was studied by supplementation of Fish oil (rich in n-3 EPA and DHA) and AA rich oil. Famotidine was used as a positive control. Generation of lipid peroxides, nitric oxide and the activity of anti-oxidant enzymes were also studied. RESULTS: Dexamethasone induced ulceration was associated with changes in the phospholipid fatty acid profile, levels of lipid peroxidation products, nitric oxide and activity of anti-oxidant enzymes. The fatty acid profile showed an increase in LA and a decrease in other PUFAs like GLA, AA, EPA and DHA. When PUFAs were supplemented in the form of Fish oil and AA rich oil or when the animals were treated with H2-blocker, famotidine, there was a decrease in the incidence of ulceration in the animals associated with near normalization of changes in the phospholipid fatty acid profile. The levels of lipid peroxides, nitric oxide, and anti-oxidant activity also reverted to control values. CONCLUSIONS: Dexamethasone induced gastric ulceration was prevented by PUFAs. This is supported by the results of our earlier study where in it was noted that in patients with DU plasma lipid peroxides, nitric oxide and phospholipid fatty acid pattern and red cell antioxidant activity were altered similar to those seen in dexamethasone treated group of the present study. These abnormalities, similar to the PUFA treated groups of the present study, reverted to normalcy following treatment of the patients with lansoprazole, a proton pump inhibitor. Further, PUFAs are known to inhibit the growth of Helicobacter pylori in vitro. Hence, it is concluded that PUFAs, free radicals, nitric oxide and anti-oxidants play a significant role in the pathobiology of peptic ulcer.  相似文献   

19.
Most cardiac surgical procedures require the use of prolonged induced myocardial ischemia. Experimental models of global myocardial ischemia which mimic cardiac surgical techniques have been developed to investigate the possibility of oxygen free radical development during prolonged myocardial ischemia or upon reperfusion. In such experiments, various free radical scavenging agents, including superoxide dismutase, catalase, and mannitol, have been shown to improve the tolerance of the heart to protracted global ischemia. Use of these agents has improved cardiac functional recovery and has attenuated the biochemical and structural changes which occur due to prolonged ischemia and reflow. In a recently developed porcine experimental model, the effects of preexisting regional myocardial ischemia with superimposed global ischemia and reperfusion have been studied, with free radical scavenging agents administered in an attempt to reduce myocardial infarction and improve regional functional recovery. In most such studies completed to date, free radical scavenging agents have resulted in better myocardial preservation, suggesting, at least indirectly, that there may be an oxygen free radical-mediated component of the ischemia-reperfusion injury seen in such models. Techniques for directly measuring myocardial oxygen free radical levels may allow for early clarification of the development of such toxic species in the clinical cardiac surgical setting.  相似文献   

20.
Oxidative damage to proteins is known to occur via conversion of side chain amino groups to corresponding carbonyl derivatives. Such damage to enzymes and purified proteins has been quantified previously by reduction with sodium boro[3H]hydride and subsequent measurement of the incorporation of 3H into amino acid fractions. In this study, the NaB3H4 reduction assay was modified to permit the quantitation of free radical-mediated oxidative damage to proteins obtained from animals. Modifications included additional extractions of protein isolates with organic solvents to remove lipids and with nitric acid to remove metal ions. The modified assay has first been validated in vitro by measuring changes in levels of oxidative damage to bovine serum albumin exposed to xanthine plus xanthine oxidase (2-fold increase), to hydrogen peroxide and iron(II) sulfate (5-fold increase), or to gamma radiation (30-fold increase over controls, respectively). gamma radiation of isolated hamster kidney protein also raised the carbonyl content in a dose-dependent manner. The modified assay has then been validated in vivo by measuring the changes in oxidative damage to lung tissue in animals exposed to approximately 85% oxygen (2-fold increase) or to different doses of paraquat (5-fold increase with the high dose over controls, respectively). The assay was then used to examine free radical-mediated oxidation introduced by acute or chronic treatment of hamsters with estrogens, since both synthetic and natural estrogens induce kidney tumors in this species. Priming of hamsters for 3 days with 20 mg/kg/day diethylstilbestrol and treatment with 100 mg/kg of this drug on the 4th day resulted in a 160% increase in free radical modification of renal proteins. Oxidative damage to kidney proteins was also assayed in hamsters treated with estradiol implants for up to 7 months, a regimen known to induce kidney tumors. Significant increases in covalent oxidative modification to renal proteins over values in age-matched controls were detected after 1, 2, and 7 months of continuous estradiol exposure. It is concluded that the modification of the NaB3H4 reduction assay is a useful postlabeling method for monitoring free radical action in vivo. Furthermore, it is postulated that free radical damage in estrogen-treated hamster kidney plays a role in estrogen-induced carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号