首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host–parasite populations. We found that island populations of the Galápagos hawk (Buteo galapagoensis) and a parasitic feather louse species (Degeeriella regalis) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se, suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites.  相似文献   

2.
Herbivorous insects that use the same host plants as larvae and adults can have a subdivided population structure that corresponds to the distribution of their hosts. Having a subdivided population structure favors local adaptation of subpopulations to small-scale environmental differences and it may promote their genetic divergence. In this paper, I present the results of a hierarchical study of population structure in a montane willow leaf beetle, Chrysomela aeneicollis (Coleoptera: Chrysomelidae). This species spends its entire life associated with the larval host (Salix spp.), which occurs in patches along high-elevation streams and in montane bogs. I analyzed the genetic differentiation of C. aeneicollis populations along three drainages in the Sierra Nevada mountains of California at five enzyme loci: ak-1, idh-2, mpi-1, pgi-1, and pgm-1, using recent modifications of Wright's F-statistics. My results demonstrated significant differentiation (FST = 0.043) among drainages that are less than 40 kilometers apart. One locus, pgi-1, showed much greater differentiation than the other four (FST = 0.412), suggesting that it is under natural selection. C. aeneicollis populations were also subdivided within drainages, with significant differentiation 1) among patches of willows (spanning less than three kilometers) and 2) in some cases, among trees within a willow patch. My results demonstrate that this species has the capacity to adapt to local environmental variation at small spatial scales.  相似文献   

3.
The relationship between social structure and partitioning of genetic variance was examined in two red howler monkey populations (W and G) in Venezuela, one of which (G) was undergoing rapid growth through colonization by new troops. Rates and patterns of gene flow had been determined through radiotelemetry and direct observation data on solitary migrants, and 10 years of troop censusing. Standard electrophoresis techniques were used to examine 29 loci in blood samples taken from 137 of the study animals. Analysis of genetic variance demonstrated: (1) a significantly high level of genetic variation among troops within populations (FST = 0.225 for W and 0.142 for G), and (2) a significant excess of heterozygosity within troops relative to expected (FIS = -0.136 for W and -0.064 for G), despite relatively high levels of observed and inferred inbreeding in W. Differences between the populations in FST values conformed to those predicted based on differences in colonization rate. Comparison of partitioning of genetic variance among different genealogical subsets of troops demonstrated that the pattern of genetic differentiation observed among troops within populations was promoted by an essentially single-male harem breeding structure, a very low rate of random exchange of breeding males among troops, and a high degree of relatedness among troop females. Between-troop genetic differentiation (FST) was thereby increased relative to that expected from other types of social organization, while the correlation between uniting gametes within troops (FIS) was decreased. Genetic differentiation between populations (2%) corresponded to that predicted from migration rates. Such a mosaic of genetic variation, combined with differences in reproductive success observed among troops and a high troop failure rate, create conditions in which interdemic selection could result in more rapid spread of advantageous gene combinations than would be expected in a panmictic population, particularly in a colonizing situation in which the founder population is small.  相似文献   

4.
Habitat loss and fragmentation can influence the genetic structure of biological populations. We studied the genetic consequences of habitat fragmentation in Florida black bear (Ursus americanus floridanus) populations. Genetic samples were collected from 339 bears, representing nine populations. Bears were genotyped for 12 microsatellite loci to estimate genetic variation and to characterize genetic structure. None of the nine study populations deviated from Hardy–Weinberg equilibrium. Genetic variation, quantified by mean expected heterozygosity (H E), ranged from 0.27 to 0.71 and was substantially lower in smaller and less connected populations. High levels of genetic differentiation among populations (global F ST = 0.224; global R ST = 0.245) suggest that fragmentation of once contiguous habitat has resulted in genetically distinct populations. There was no isolation-by-distance relationship among Florida black bear populations, likely because of barriers to gene flow created by habitat fragmentation and other anthropogenic disturbances. These factors resulted in genetic differentiation among populations, even those that were geographically close. Population assignment tests indicated that most individuals were genetically assigned to the population where they were sampled. Habitat fragmentation and anthropogenic barriers to movement appear to have limited the dispersal capabilities of the Florida black bear, thereby reducing gene flow among populations. Regional corridors or translocation of bears may be needed to restore historical levels of genetic variation. Our results suggest that management actions to mitigate genetic consequences of habitat fragmentation are needed to ensure long-term persistence of the Florida black bear.  相似文献   

5.
Pinus rzedowskii is an endangered pine species from Michoaca´n (central Me´xico), which has been previously reported from only three localities. Classified within the subgenus Strobus, it exhibits intermediate morphological characters between subgenera Strobus and Pinus. We analyzed genetic aspects that could shed light on the evolution and conservation of this species. The genetic structure of nine populations was examined using 14 isozyme loci. Pinus rzedowskii has a relatively high level of genetic variation with 46.8% of the loci assayed being polymorphic, a total of 35 alleles, and a mean heterozygosity per population of 0.219. We calculated Wright's FST statistic to estimate gene flow indirectly and to evaluate whether or not there was genetic structuring among populations. We found a marked differentiation among populations (FST = 0.175) and significant inbreeding (FIS = 0.247). No pattern of isolation by distance was found. We also constructed a dendrogram based on a genetic distance matrix to obtain an overview of the possible historical relationships among populations. Finally, we found a convex relationship between the genetic distance among populations and the number of ancestral lineages, suggesting that demographically this species has not been at risk recently. Although endangered, with small and fragmented populations, P. rzedowskii shows higher levels of genetic variation than other conifer species with larger populations or similar conservation status.  相似文献   

6.
Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. FST-values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits.  相似文献   

7.
The population structure of An. stephensi in North-west India was studied to assess the impact of the Aravalli Hills, as a barrier to gene flow using microsatellite markers. Large and significant genetic differentiation was found along the sides of, as well as across, the Aravalli Hills as the mean FST and RST on west vs. east of the Aravalli Hills were 0.213, 0.112 and 0.179, 0.056, respectively. Similarly, across the hills, mean values of FST and RST were 0.100 and 0.094, respectively. Genetic diversity on both sides did not vary significantly. The FST values were more sensitive than RST values, indicating that genetic drift might have caused genetic differentiation between populations. A positive correlation (r = 0.0149 and 0.157, respective to FST and RST) was found between genetic differentiations and geographic distances irrespective of the hills. Low level of gene flow was found along both sides (Nm = 0.92 and 0.14; west vs. east of Aravalli Hills, respectively) as compared to across the Aravalli Hills (Nm = 2.25). It was found that the Aravalli Hills are not working as an effective barrier to gene flow for An. Stephensi, maybe because of the low average height and discontinuous hills, however, the distance is playing a major role for differentiation between populations due to active mode of dispersal of An. stephensi mosquitoes which have a short flight range. All this information should help draw the strategies for genetic control of mosquitoes using transgenic mosquitoes.  相似文献   

8.
Genetic variability in 10 natural Tunisian populations of Medicago laciniata were analysed using 19 quantitative traits and 12 polymorphic microsatellite loci. A large degree of genetic variability within-populations and among-populations was detected for both quantitative characters and molecular markers. High genetic differentiation among populations for quantitative traits was seen, with Q ST = 0.47, and F ST = 0.47 for microsatellite markers. Several quantitative traits displayed no statistical difference in the levels of Q ST and F ST . Further, significant correlations between quantitative traits and eco-geographical factors suggest that divergence in the traits among populations may track environmental differences. There was no significant correlation between genetic variability at quantitative traits and microsatellite markers within populations. The site-of-origin of eco-geographical factors explain between 18.13% and 23.40% of genetic variance among populations at quantitative traits and microsatellite markers, respectively. The environmental factors that most influence variation in measured traits among populations are assimilated phosphorus (P205) and mean annual rainfall, followed by climate and soil texture, altitude and organic matter. Significant associations between eco-geographical factors and gene diversity, H e , were established in five-microsatellite loci suggesting that these simple sequence repeats (SSRs) are not necessarily biologically neutral.  相似文献   

9.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.  相似文献   

10.
We analysed 16 populations of Dactylorhiza majalis subsp. majalis from northern Poland, simultaneously utilizing both morphological and molecular data. Genetic differentiation was examined using five microsatellite loci, and morphological variation was assessed for 23 characters. At the species level, our results showed a moderate level of genetic diversity (A = 6.00; Ae = 1.86; Ho = 0.387; FIS = 0.139) which varied between the studied populations (A = 2.60–4.20; Ae = 1.68–2.39; Ho = 0.270–0.523; FIS = ?0.064–0.355). A significant excess of homozygotes was detected in five population, while excess of heterozygotes was observed in four populations, but the latter values were statistically insignificant. Moderate, but clear between population genetic differentiation was found (FST = 0.101; p < 0.001). Considering pairwise‐FST and number of migrants among populations, we recognized three population groups (I, II, III), where the first could be further divided into two subgroups (Ia, Ib). These three groups differed with respect to gene flow values (Nm = 0.39–1.12). The highest number of migrants per generation was noticed among populations of subgroup Ia (8.58), indicative of a central panmictic population with free gene flow surrounded by peripatric local populations (Ib) with more limited gene flow. Geographic isolation, habitat fragmentation and limited seed dispersal are inferred to have caused limitations to gene flow among the three indicated population groups. There was a significant correlation between the morphological and genetic distance matrices. A weak but significant pattern of isolation by distance was also observed (r = 0.351; p < 0.05).  相似文献   

11.
Alnus hirsuta in Korea was measured to estimate the amount and pattern of genetic diversity and population structure. The mean genetic diversity within populations was 0.166. Korean alder populations have slightly high levels of genetic diversity compared to those of two Canadian alder species. The genetic differentiation among populations accounted for 9% of the total variation. The rate of gene flow was estimated high (Nm=2.63). Analysis of inbreeding coefficient, calculated for all polymorphic loci in each population, showed a substantial heterozygote deficiency relative to Hardy-Weinberg expectations. The mean G ST value of A. hirsuta in Korea was 0.087. The low value of G ST in this species, reflecting little spatial genetic differentiation, may indicate extensive gene flow. A relationship between the mean heterozygosity and annual rainfall showed a positive relationship (r 2=0.54, F=4.67). Received 8 August 1998/ Accepted in revised form 7 July 1999  相似文献   

12.
Ren Z  Zhu B  Wang D  Ma E  Su D  Zhong Y 《Genetica》2008,132(1):103-112
Most of our current understanding of comparative population structure has been come from studies of parasite–host systems, whereas the genetic comparison of gallnut-aphids and their host-plants remain poorly documented. Here, we examined the population genetic structure of the Chinese sumac aphid Schlechtendalia chinensis and its unique primary host-plant Rhus chinensis in a mountainous province in western China using inter-simple sequence repeat (ISSR) markers. Despite being sampled from a mountainous geographic range, analysis of molecular variance (AMOVA) showed that the majority of genetic variation occurred among individuals within populations of both the aphid and its host. The aphid populations were found to be structured similarly to their primary host populations (F ST values were 0.239 for the aphid and 0.209 for its host), suggesting that there are similar patterns of gene flow between the populations of the aphid and between populations of its host-plant. The genetic distances (F ST/1 − F ST) between the aphid populations and between its host-plant populations were uncorrelated, indicating that sites with genetically similar host-plant populations may not always have genetically similar aphid populations. The lack of relationships between genetic and geographical distance matrices suggested that isolation by distance (IBD) played a negligible role at this level. This may be mainly attributed to the founder effect, genetic drift and the relative small spatial scale between populations. Zhumei Ren and Bin Zhu contributed equally to this work.  相似文献   

13.
Understanding the evolution of parasites is important to both basic and applied evolutionary biology. Knowledge of the genetic structure of parasite populations is critical for our ability to predict how an infection can spread through a host population and for the design of effective control methods. However, very little is known about the genetic structure of most human parasites, including the human louse (Pediculus humanus). This species is composed of two ecotypes: the head louse (Pediculus humanus capitis De Geer), and the clothing (body) louse (Pediculus humanus humanus Linnaeus). Hundreds of millions of head louse infestations affect children every year, and this number is on the rise, in part because of increased resistance to insecticides. Clothing lice affect mostly homeless and refugee-camp populations and although they are less prevalent than head lice, the medical consequences are more severe because they vector deadly bacterial pathogens. In this study we present the first assessment of the genetic structure of human louse populations by analyzing the nuclear genetic variation at 15 newly developed microsatellite loci in 93 human lice from 11 sites in four world regions. Both ecotypes showed heterozygote deficits relative to Hardy–Weinberg equilibrium and high inbreeding values, an expected pattern given their parasitic life history. Bayesian clustering analyses assigned lice to four distinct genetic clusters that were geographically structured. The low levels of gene flow among louse populations suggested that the evolution of insecticide resistance in lice would most likely be affected by local selection pressures, underscoring the importance of tailoring control strategies to population-specific genetic makeup and evolutionary history. Our panel of microsatellite markers provides powerful data to investigate not only ecological and evolutionary processes in lice, but also those in their human hosts because of the long-term coevolutionary association between lice and humans.  相似文献   

14.
15.
Termite alates are thought to be poor active flyers, and this should lead to considerable genetic differentiation on small spatial scales. However, using four microsatellite loci for the termite Macrotermes michaelseni we found low values of genetic differentiation (FST) across a spatial scale of even more than 50 km. Genetic differentiation between populations increased with spatial distance up to 50 km. Furthermore, up to this distance, the scatter around the linear regression of genetic differentiation versus spatial distance increased with spatial distance. This suggests that across such spatial distances gene flow and genetic drift are of about equal importance, and near equilibrium. Using a regional FST as well as the distance between populations with non-significant FST-values (up to 25 km), gene flow is sufficiently high so that populations may be regarded as panmictic on spatial scales of 25 to 50 km. The apparent contradiction between dispersal distances observed in the field and estimates of gene flow from genetic markers may be due to the masses of swarming alates. Assuming a leptokurtic distribution of dispersal distances, atleast some alates are expected to travel considerable distances, most likely by passive drift. Received 25 January 2005; revised 11 April 2005; accepted 26 April 2005.  相似文献   

16.
In species acting as hosts of infectious agents, the extent of gene flow between populations is of particular interest because the expansion of different infectious diseases is usually related to the dispersal of the host. We have estimated levels of gene flow among populations of the sigmodontine rodent Oligoryzomys flavescens, in which high titers of antibodies have been detected for a Hantavirus in Argentina that produces a severe pulmonary syndrome. Enzyme polymorphism was studied by means of starch gel electrophoresis in 10 populations from the area where human cases of Hantavirus have occurred. Genetic differentiation between populations was calculated from FST values with the equation Nm = [(1/FST−1]/4. To assess the relative importance of current gene flow and historical associations between populations, the relationship of population pairwise log Nm and log geographic distance was examined. Low FST (mean = 0.038) and high Nm (15.27) values suggest high levels of gene flow among populations. The lack of an isolation by distance pattern would indicate that this species has recently colonized the area. The northernmost population, located on the margin of a great river, shows very high levels of gene flow with the downstream populations despite the large geographic distances. Passive transport of animals down the river by floating plants would promote unidirectional gene flow. This fact and the highest mean heterozygosity of that northernmost population suggest it is a center of dispersal within the species' range. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
In natural populations of Festuca pratensis Huds. from the islands of Onega Lake, the level of genetic diversity was evaluated. In three populations variability of 64 RAPD loci was tested. The level of genetic diversity (P 95% = 30.2; H exp = 0.093) was low for a cross-pollinating plant species. Furthermore, genetic similarity between the plants from insular populations was found to be high (I N = 0.887). It was demonstrated that genetic variation among the population accounted for at most 5.3% of total genetic diversity, which, however, was higher than the F ST values for continental populations (F ST = 0.022). It was suggested that specific features of the genetic structure of insular population, i.e., low gene diversity within the populations along with high differentiation among the populations, were caused by the gene flow attenuation, as a result of isolation, and intensification of inbreeding. These features had negative effect on total population adaptation.  相似文献   

18.
We investigated levels of genetic diversity, population genetic structure, and gene flow in Eurya japonica, a widespread and broad-leaved evergreen dioecious tree native to Japan, China, Taiwan, and the southern and southwestern coast of the Korean Peninsula. Starch-gel electrophoresis was conducted on leaves collected from 1,000 plants in 20 Korean populations. All 12 loci examined were polymorphic in at least one population, and the mean number of alleles per locus was 3.79. In addition, mean observed population heterozygosity (Hop = 0.425), expected heterozygosity (Hep = 0.462), and total genetic diversity (HT = 0.496) were substantially higher than average values for species with similar life history traits. Although significant differences in allele frequency were detected between populations at all loci (P < 0.001), <7% of the genetic variation was found among populations (FST = 0.069). There was a significant negative correlation between genetic identity and distance between populations (r = -0.341; P < 0.05), but this explained only a small amount of the diversity among populations. Indirect estimates of the number of migrants per generation (Nm) (3.37, calculated from FST; 3.74, calculated from the mean frequency of eight private alleles) indicate that gene flow is extensive among Korean populations of E. japonica. Factors contributing to the high levels of genetic diversity found within populations of E. japonica include large and contiguous populations, obligating outcrossing (dioecious plant), high fecundity, and long generation time. Occasional seed dispersal by humans and pollen movement by domesticated honey bees may further enhance gene flow within the species.  相似文献   

19.
In this study we investigated the within- and between-population genetic variation using microsatellite markers and quantitative traits of the shea tree, Vitellaria paradoxa, an important agroforestry tree species of the Sudano–Sahelian region in Africa. Eleven populations were sampled across Mali and in northern Côte d’Ivoire. Leaf size and form and growth traits were measured in a progeny test at the nursery stage. Eight microsatellites were used to assess neutral genetic variation. Low levels of heterozygosity were recorded (1.6–3.0 alleles/locus; HE = 0.25–0.42) and the fixation index (FIS = −0.227–0.186) was not significantly different from zero suggesting that Hardy–Weinberg equilibrium is encountered in all populations sampled. Quantitative traits exhibited a strong genetic variation between populations and between families within populations. The degree of population differentiation of the quantitative traits (QST = 0.055–0.283, QSTmean = 0.189) strongly exceeds that in eight microsatellite loci (FST = −0.011–0.142, FSTmean = 0.047). Global and pairwise FST values were very low and not significantly different from zero suggesting agroforestry practices are amplifying gene flow (Nm = 5.07). The population means for quantitative traits and the rainfall variable were not correlated, showing variation was not linked with this climatic cline. It is suggested that this marked differentiation for quantitative traits, independent of environmental clines and despite a high gene flow, is a result of local adaptation and human selection of shea trees. This process has induced high linkage disequilibrium between underlying loci of polygenic characters.  相似文献   

20.
The louse genus Carduiceps Clay & Meinertzhagen, 1939 is widely distributed on sandpipers and stints (Calidrinae). The current taxonomy includes three species on the Calidrinae (Carduiceps meinertzhageni, Carduiceps scalaris, Carduiceps zonarius) and four species on noncalidrine hosts. We estimated a phylogeny of four of the seven species of Carduiceps (the three mentioned above and Carduiceps fulvofasciatus) from 13 of the 29 hosts based on three mitochondrial loci, and evaluated the relative importance of flyway differentiation (same host species has different lice along different flyways) and flyway homogenization (different host species have the same lice along the same flyway). We found no evidence for either process. Instead, the present, morphology‐based, taxonomy of the genus corresponds exactly to the gene‐based phylogeny, with all four included species monophyletic. Carduiceps zonarius is found both to inhabit a wider range of hosts than wing lice of the genus Lunaceps occurring on the same group of birds, and to occur on Calidris sandpipers of all sizes, both of which are unexpected for a body louse. The previously proposed family Esthiopteridae is found to be monophyletic with good support. The concatenated dataset suggests that the pigeon louse genus Columbicola may be closely related to the auk and diver louse genus Craspedonirmus. These two genera share some morphological characters with Carduiceps, but no support was obtained for grouping these three genera together. Based on mitochondrial data alone, the relationships among genera within this proposed family cannot be properly assessed, but some previously suggested relationships within this proposed family are confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号