首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Several common plants (Chenopodiaceae) of the Australian arid zone produce diaspores that bear small and inconspicuous food bodies and are adapted for dispersal by ants. For these species, myrmecochory probably represents an adaptation for highly directional dispersal of diaspores to favorable microsites where nutrients are concentrated and possibly more accessible. Dispersal of diaspores by ants can have a pronounced effect on plant dispersion. In habitats characterized by red, crusty alluvial loam soils, myrmecochorous species grow almost exclusively on ant mounds; these same species grow in relatively continuous stands in sandy soil habitats. The flora of the Australia arid zone may contain many plant species that are adapted to use ants as dispersal agents. We consider several factors that may have promoted or facilitated the evolution of myrmecochory in arid zone plants.  相似文献   

2.
The present research is based on previous surveys of primary succession in Danish seashore communities Dispersal spectra for these communities set up, using diaspore morphology as evidence for mode of dispersal Dispersal spectra of species occurring in different zones and different successional phases are compared, and differences between the dispersal spectra of natural and man-made communities are investigated
The dispersal of diaspores to Danish seashore communities occurs at random because it is mostly achieved by abiotic agents or human beings Wind is the prevalent dispersal vector, even though wind dispersal is not as common in Danish seashore communities as It IS in open, disturbed, treeless vegetation throughout the world Dispersal by water is most common among seashore plants that occur in the outer zones As the succession progresses, it is found that plants with no special device or censer dispersal are more frequent in the intermediary stages, while dispersal by ants, adhesion, and in the digestive tract of animals increases later in the succession No significant difference between dispersal spectra of the natural and man-made communities was found  相似文献   

3.
Fleshy-fruitedness in the New Zealand flora   总被引:2,自引:1,他引:1  
Aim It has been claimed that the New Zealand flora has an unusually high frequency of fleshy-fruitedness. This paper tests whether fleshy-fruitedness is indeed more common in New Zealand than in other temperate floras, then examines the distribution of fleshy-fruitedness among taxa and floristic elements to determine whether the flora conforms to predictions for a continental island with a relictual floristic element. Lastly, I test the extent to which fleshy-fruitedness has influenced colonization success and subsequent speciation within New Zealand. Methods Information on fruit characteristics for all indigenous seed plants was extracted from the Flora of New Zealand series and analysed with χ2 tests. Results Contrary to previous claims fleshy-fruitedness was not unusually common in the New Zealand flora as a whole, when compared with other temperate floras. It is only more common in alpine communities and among trees. I also found no evidence for selective immigration; fleshy-fruited New Zealand genera were not more likely, than dry-fruited genera, to also occur in Australia. Furthermore there is no evidence that the New Zealand environment has favoured fleshy-fruited taxa; there has been no autochthonous evolution of fleshy-fruitedness in New Zealand, fleshy-fruitedness has had no significant effect on speciation within New Zealand, and endemic genera are no more likely to be fleshy-fruited than nonendemic genera. Fleshy-fruitedness in New Zealand is, however, strongly related to floristic elements of the flora. New Zealand is a continental island and therefore, theoretically, those elements of the flora dating from a time when the landmass was less isolated, should show a more balanced representation of dispersal modes. Contrary to this, fleshy-fruitedness is more common among species in Gondwanan taxa or in taxa with pollen records dating to before the Miocene. Main conclusions Fleshy-fruitedness in New Zealand conforms to neither the expectations for an isolated landmasses, namely a disharmonic range of dispersal modes, nor expectations for a continental island. I suggest that this pattern may be a product of selective survival of highly vagile taxa in the low-lying archipelago that was New Zealand during the late Cretaceous to mid-Cenozoic, followed by an invasion by taxa with a broader range of dispersal modes facilitated by the establishment of the circumpolar current.  相似文献   

4.
Plant dispersal is a very important ecological phenomenon, as it can enable species to move away from the parent plant. This contributes to shaping communities, determining patterns of distribution, landscape configuration, plant invasions and evolutionary processes. Measuring dispersal distance directly is difficult and thus, diaspore morphology can be used to make estimates. Previous research on the topic often resorts to analysing the diaspore’s morphology as if it was a bi-dimensional structure; when in many cases, diaspores have three-dimensional qualities. In this study, we show how estimates of wind dispersal potential of Ailanthus altissima can be considerably improved using morphological variables that succeed in describing the three-dimensional nature of samaras. We suggest that this reasoning could be extensively applied to research involving not only other species, but also multi-specific scenarios with a wide range of diaspore morphologies.  相似文献   

5.

Motivation

Although dispersal ability is one of the key features determining the spatial dynamics of plant populations and the structure of plant communities, it is also one of the traits for which we still lack data for most species. We compiled a comprehensive dataset of seed dispersal distance classes and predominant dispersal modes for most European vascular plants. Our seed dispersal dataset can be used in functional biogeography, dynamic vegetation modelling and ecological studies at local to continental scales.

Main Types of Variables Contained

Species were classified into seven ordered classes with similar dispersal distances estimated based on the predominant dispersal mode, the morphology of dispersal units (diaspores or propagules), life form, plant height, seed mass, habitat and known dispersal by humans. We evaluated our results by comparing them with dispersal distances calculated using the ‘dispeRsal’ function in R.

Spatial Location

Europe.

Time Period

Present.

Major Taxa and Level of Measurement

The seed dispersal dataset contains information on dispersal distance classes and the predominant dispersal mode for 10,327 most frequent and locally dominant European vascular plant species.

Software Format

Data are available in .csv format.  相似文献   

6.
Abstract. Question: How do the relative frequencies of plant traits (clonality, growth form, seed weight, diaspore morphology) vary during the life cycle and how does this affect regeneration? Location: Alpine meadow and heath communities at Kilpisjärvi, sub‐Arctic Finland. Methods: Control plots and three treatments were used to measure relative species abundances for five life cycle stages: standing vegetation, seed rain, seed bank and seedlings emerging in gaps and in closed vegetation. Results: The relative frequencies of plant traits varied between the life cycle stages. The meadows were dominated by weakly clonal herbs, small or intermediate seeds and unappendaged diaspores, while the heaths were dominated by clonal dwarf shrubs, small seeds and fleshy fruits. In the meadows, species with small seeds dominated during the seed rain and in the seedling stage in gaps, while species with intermediate seeds dominated the seed bank and the seedling stage in closed vegetation. Species with unappendaged diaspores dominated throughout the life cycle. In the heaths, seed bank and seedling stage were practically absent. Conclusions: The observed differences in plant trait spectra between life cycle stages indicate that important environmental factors differ among the stages. Small seeds are advantageous for dispersal, whereas intermediate seeds have a greater probability of germinating and establishing in closed vegetation. Appendages facilitate dispersal, whereas unappendaged diaspores favour seed burial. Although the plant growth form spectrum largely reflects environmental constraints during the regeneration cycle, information on seed weight and diaspore morphology improves our knowledge of the relative importance of morphological adaptations of sexual structures in different stages during the life cycle.  相似文献   

7.
The interpretation of subfossil records of wild plant species with respect to both environmental conditions and past vegetation is complicated by the following: (1) production and dispersal of plant remains including diaspores, (2) the formation of the soil flora, (3) taphonomic processes and differential preservation that act on subfossil assemblages and (4) methods applied to produce subfossil records. Whereas the similarity between recent plant communities and seed banks is often weak, the relationship between past vegetation and subfossil assemblages is still more complicated. It is therefore unlikely that macrofossil assemblages derived from soil samples can be considered as pure samples representing particular palaeobiocoenoses. The assumption that plant communities, in the past, may have been in some way aberrant with respect to composition and that the ecological ranges of species varied during the Quaternary has to be rejected, if not based on well considered assumptions or evidence from pure samples. Only if a sufficient number of suitable studies is available, which enable evaluation between all kinds of plant communities and their respective seed floras, can progress be made with regard to the reconstruction of past vegetation and environmental conditions. As long as these data are not available, the ecological interpretation of particular subfossil assemblages isolated from soil samples has to be carefully evaluated within their particular context.  相似文献   

8.
Experimental and structural investigations of anemochorous dispersal   总被引:3,自引:1,他引:2  
Hensen  Isabell  Müller  Caroline 《Plant Ecology》1997,133(2):169-180
The present paper describes the anemochorous dispersal of representative diaspores of Asteraceae, Dipsacaceae, and Poaceae from xerothermic grassland communities of Central and Northeastern Germany. For eleven species, potential dispersal distance was determined by fall velocity experiments as well as by taking into account the diaspore flight angle under the influence of an artificially-produced, regularly, and horizontally blowing air stream. The latter is a new and comparatively simple method enabling the implementation of mathematical formulas which describe the potential flight capacity of a diaspore for different wind speeds and exposition heights. Surface structures, shown by a scanning electron microscope, were consulted for the interpretation of results.Of the species considered, the best fliers are the diaspores of Asteraceae and Melica ciliata (Poaceae) characterized by a plumous pappus or a hairy lemma. The wing-like attachments of the diaspores of the other investigated Poaceae and Dipsacaceae are clearly less efficient for wind dispersal.The fall rates of the investigated species agree to a great extent with literature data. But a critical comparison of both methods employed shows that fall velocity as a measure of horizontal diaspore flight capacity is only suitable for low wind force < 2 m s-1. With increasing wind force, the dispersal distance of a flying diaspore does not rise in a linear, but rather in an approximately quadratic manner. Thus, in nature, conditions of higher wind forces may be very important for the reachable dispersal distances of well-flying diaspores. This could be of particular significance for nature conservation concepts concerning the vulnerability of species towards isolation within fragmented landscapes.  相似文献   

9.
Abstract. The concept of species pool is reviewed. It is suggested to maintain the terms regional pool and local pool but replace actual pool by community pool. The regional and local pool are considered as selections from the regional and local flora based on ecological similarity. It is also suggested to include in the community pool a selection of species present only as diaspores in the diaspore bank (including diaspores from the seed rain), the selection being based on the same ecological criteria. Four approaches to determine the species pool are discussed: ecological, functional and phytosociological similarity, and an experimental approach. The phytosociological approach appears to be promising. The species pool is elaborated as a fuzzy set in the sense that each species of a community or a local or regional flora is a member of any community, local or regional species pool with different degrees of membership. This membership is defined as a probability of a species to become part of the community pool of a target community which is a function of the ecological (environmen-tal/functional/phytosociological) similarity of the species with the target community; the shortness of the distance of its nearest populations, the frequency/abundance, the dispersal capacity, the actual presence of dispersal mechanisms, the germinability of newly arrived diaspores, and the longevity of seeds (viability) in the diaspore bank. The information on species pools is needed for designing experiments where the number of species in a community is to be manipulated, for instance in restoration management.  相似文献   

10.
The dispersal syndrome hypothesis states that plant diaspores show morphological features that are the results of adaptation for dispersal by a particular vector. This can enable to identify the relative importance of dispersal agents within plant communities. Nevertheless, there is still little information about seed dispersal spectra and diaspore traits related to different dispersal agents in the equatorial montane forests, despite their high biodiversity and important ecosystem services as watersheds for human communities. Due to an increase in environmental stress at high elevations a reduction in the prevalence of endozoochory, and a reduction in the size of endozoochorous diaspores in plant assemblages could be expected. We reviewed published data from 64 Andean cloud forest plots to assess the dispersal spectra, the incidence of different traits related to seed dispersal, and the distribution of dispersal syndromes within cloud forests of northern South America. We then evaluated two questions related to seed dispersal in these forests: (1) Does the number and percentage of endozoochorous species in woody plant assemblages decrease at higher elevation? and (2) Does the mean diaspore size of endozoochorously dispersed tree assemblages decrease with elevation?  相似文献   

11.
植物繁殖体的形态特征及其物种分布是植物长期适应环境的结果,对退化生态系统的更新与恢复具有重要的理论与实践指导意义。研究了80种植物的繁殖体形态特征及与其物种分布的关系,结果表明:1)繁殖体重量差别较大(0. 020—357.428 mg),主要集中在1—9.999 mg(占52.5%)。2)繁殖体的形状指数FI变化范围较大(1.06—12.93),61.3%的植物繁殖体的形状近圆球形。3)33种植物繁殖体具有明显的附属物,包括毛、翅、芒和刺等。4)87.5%的植物繁殖体表面具有各种纹饰(棱、被毛、纹和颗粒状等);繁殖体颜色以褐色和黑色为主,少数繁殖体颜色鲜艳;6种植物繁殖体具有吸水分泌粘液的特性。5)黄土丘陵沟壑区繁殖体重量小或形状近圆球形的植物分布数量多、范围广。6)繁殖体具有毛、翅和芒附属物或吸湿分泌粘液的植物在黄土丘陵沟壑区较繁殖体无附属物的植物能够分布更多、更广。繁殖体这些有利于物种分布的形态特征对于植物适应该区干旱与土壤侵蚀干扰具有重要的生态学意义,而且可用于指导该区人工补播促进植被恢复的物种选择。  相似文献   

12.
Plant communities are often dispersal‐limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. We predicted that seed dispersal by ungulates acts as an ecological filter – which differentially affects individuals according to their characteristics and shapes species assemblages – and that the filter varies according to the dispersal mechanism (endozoochory, fur‐epizoochory and hoof‐epizoochory). We conducted two‐step individual participant data meta‐analyses of 52 studies on plant dispersal by ungulates in fragmented landscapes, comparing eight plant traits and two habitat indicators between dispersed and non‐dispersed plants. We found that ungulates dispersed at least 44% of the available plant species. Moreover, some plant traits and habitat indicators increased the likelihood for plant of being dispersed. Persistent or nitrophilous plant species from open habitats or bearing dry or elongated diaspores were more likely to be dispersed by ungulates, whatever the dispersal mechanism. In addition, endozoochory was more likely for diaspores bearing elongated appendages whereas epizoochory was more likely for diaspores released relatively high in vegetation. Hoof‐epizoochory was more likely for light diaspores without hooked appendages. Fur‐epizoochory was more likely for diaspores with appendages, particularly elongated or hooked ones. We thus observed a gradient of filtering effect among the three dispersal mechanisms. Endozoochory had an effect of rather weak intensity (impacting six plant characteristics with variations between ungulate‐dispersed and non‐dispersed plant species mostly below 25%), whereas hoof‐epizoochory had a stronger effect (eight characteristics included five ones with above 75% variation), and fur‐epizoochory an even stronger one (nine characteristics included six ones with above 75% variation). Our results demonstrate that seed dispersal by ungulates is an ecological filter whose intensity varies according to the dispersal mechanism considered. Ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales. Synthesis Plant communities are often dispersal‐limited and zoochory can be an efficient mechanism for plants to colonize new patches of potentially suitable habitat. Our analysis is the first synthesis of ungulate seed dispersal that compares characteristics from both non‐dispersed and dispersed diaspores, distinguishing the three zoochory mechanisms ungulates are involved in: endozoochory, hoof‐epizoochory and fur‐epizoochory. We confirmed that seed dispersal by ungulates is an ecological filter whose intensity increases from endozoochory, then hoof‐epizoochory to finally fur‐epizoochory. By filtering seed traits through dispersal, ungulates can thus play a key role in plant community dynamics and have implications for plant spatial distribution patterns at multiple scales.  相似文献   

13.
Aim To enhance our understanding of the evolutionary interactions between seed‐dispersal syndromes, life‐forms, seed size, and habitat characteristics by studying their association with the regional‐scale distributions of subtropical rain‐forest plants in the context of climatic gradients. Location South‐east Queensland, subtropical eastern Australia (152° E, 26° S). Methods We classified 250 rain‐forest sites into six floristic site‐groups based on their woody plant composition. The resulting classification was strongly associated with variation in rainfall. The distribution of species across the floristic site‐groups was used to assign 568 species to seven habitat classes (one class for ‘widespread’ species, with all other species classified according to the site‐group within which they were most frequent). Species were also classified for three other categorical life‐history factors: three dispersal syndromes based on diaspore morphology (fleshy, wind‐assisted, and unadorned); four life‐forms (trees, shrubs and small trees, tall climbers, and short and shrubby climbers); and four seed‐diameter classes (< 3 mm, ≥ 3 and < 4.5 mm, ≥ 4.5 and < 7 mm, and ≥ 7 mm). We used a basic comparative approach augmented by simple phylogenetically constrained comparisons to assess association between dispersal syndrome, seed size, life‐form, and habitat class. Results Across the rain forests of south‐east Queensland, the proportion of species with fleshy diaspores or of large stature increases with rainfall. High‐rainfall sites also have larger average seed sizes, but the difference in average seed size between high‐ and low‐rainfall sites is small compared with variation within sites. Among species, those with fleshy fruit tend to have larger seeds and to favour high‐rainfall sites. Very few small trees produce diaspores adapted for wind‐assisted dispersal. On average, species with unadorned diaspores have smaller seeds than those with fleshy diaspores. However, within sites, species with unadorned and fleshy diaspores have similar average seed sizes, and some species with unadorned diaspores from high‐rainfall habitats have extremely large seeds. Main conclusions Commonly observed associations between fleshy fruit, larger plants, larger seeds, and productive habitats are apparent within the rain‐forest flora of south‐east Queensland. However, these associations are generally weak and involve complex interactions. For example, the strong tendency for species with fleshy fruit to have larger seeds than those with unadorned diaspores concealed a significant group of species from wetter forests that produce extremely large seeds and unadorned diaspores. The most widespread species in this study tend to be large plants (particularly robust lianes) and to produce fleshy fruit, but they tend not to have relatively large seeds. The association between large seeds, large plants, fleshy fruit and productive habitats is discussed as part of an evolutionary strategy favouring fitness in populations close to carrying capacity. We review some problems with focusing on establishment chances per seed as the driver towards association between large seeds, large plants and productive rain‐forest habitats (the difficult‐establishment hypothesis). Instead we suggest that production of large, short‐lived seeds by long‐lived plants in temporally stable, closed habitats may reflect the limited evolutionary potential for strategies enhancing colonization (e.g. producing large numbers of dormant seeds), thus allowing the establishment benefits of large seeds greater selective influence (the slow‐replacement hypothesis). The association of fleshy fruit with large seeds probably reflects the difficulty of dispersing large seeds by other means (the difficult‐dispersal hypothesis).  相似文献   

14.
Different species’ niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate–water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.  相似文献   

15.
Diaspore (e.g. seeds, fruits) dispersal is pivotal for plant communities and often involves several steps and different dispersing agents. Most studies focusing on diaspore dispersal by animals have highlighted the role of vertebrates, neglecting the role of ants in the diaspore dispersal of non-myrmecochorous plants. Diaspore dispersal by ants is especially relevant in the current scenario of declining of vertebrate populations and, consequently, collapse of the dispersal system of large-seeded plants. Although ants can never compensate for the dispersal service provided by vertebrates, they can mitigate the impact of vertebrate decline via removal of diaspores deposited on the ground. We have used a meta-analytical approach to investigate the contribution of ants in the removal of non-myrmecochorous diaspores (through vertebrate exclusion experiments). We considered the number of diaspore removal as effect size and factors such as plant growth forms, diaspore and ant size, habitat type as moderators. In addition, we investigated the role of such factors on the diaspore removal distance by ants. Ants played complementary role to non-myrmecochorous diaspore removal services provided by vertebrates (mean Hedges’ g of −0.30). The ant diaspore removal was 69% higher for diaspores from shrubs than that of tree diaspores and removal of small-sized diaspores were 69% and 70% higher in comparison to medium- and large-sized diaspores, respectively. Regarding the diaspore removal distance by ants, those of tree species were removed 32% farther than those of shrub species, and diaspores were removed three- times farther in the savanna than in rainforest ecosystems. Our results highlight the shrubs and small-sized diaspores. Regarding the diaspore removal distance, the ants can be crucial for the dispersal of tree diaspores and in the savanna ecosystems. Finally, considering the biodiversity crisis, the ants may play an even more important role than appreciated in diaspores dispersal.  相似文献   

16.
In an old grazed and very diverse common in Central Zealand, Denmark, the recolonization of vegetation on experimentally bared mineral soil was studied over a six years period (198691). In six experimental squares (1×1 m) in pairs placed in three different areas the plant cover and 10 cm of top soil was removed in 1986 after an analysis (Hult-Sernander-Du Rietz method) of the vegetation in a central, fixed plot (50 × 50 cm) and an examination of the flora in the nearest surroundings (<10 m).
In each of the following years (1987–91) the recolonizating vegetation of the bared plots was analysed again. After one year an almost closed vegetation was already established in most of the plots. The new vegetation consists mostly of immigrating previously found species but often with another cover value. A small number of the original species are still absent after five years. A smaller number of the species in the new vegetation are intrusive, and most of these species are coming from the nearest surroundings. In the first five years all recolonization is by means of diaspores, and the diversity increases in the last years. The paper discusses returning, disappearing and new intrusive species with background in their way of dispersal of diaspores. The conclusion is that in 1991 a succession is still - but slowly - going on and that a totally stable vegetation possibly never will be established.  相似文献   

17.
Reduced dispersability of species living on islands relative to mainland has been documented in both plants and animals. One evolutionary scenario explains this trend by strong selection against dispersal, once the species has reached the island, to reduce dispersal out to sea. In this study, we compare the dispersal ability of three wind dispersed plant species (Cirsium arvense, Epilobium angustifolium, and E. hirsutum) from populations on mainland and three islands. Dispersal ability was estimated directly as drop time of diaspores, and indirectly using a morphological measure relating the weight of the diaspore to the size of the pappus (Cirsium) or seed hairs (Epilobium). Positive correlation between the morphological measure of dispersal ability and drop time of diaspores were found for all study species. Dispersal ability varied significantly among mainland and islands, and among species. C. arvense showed a significant reduction in dispersal ability on islands compared to mainland, whereas the reverse was found for the two Epilobium species. Overall Epilobium diaspores had a 2–4 times higher dispersability than C. arvense, indicating that degree of isolation of islands vary among study species. Significant differences in dispersability among plants within populations were detected in all species suggesting that this trait may have a genetic component.  相似文献   

18.
Myrmecochory (seed dispersal by ants) is a prominent dispersal mechanism in many environments, and can play a key role in local vegetation dynamics. Here we investigate its interaction with another key process in vegetation dynamics—fire. We examine ant dispersal of seeds immediately before and after experimental burning in an Australian tropical savanna, one of the world’s most fire-prone ecosystems. Specifically, our study addressed the effects of burning on: (1) the composition of ants removing seeds, (2) number of seed removals, and (3) distance of seed dispersal. Fire led to higher rates of seed removal post-fire when compared with unburnt habitat, and markedly altered dispersal distance, with mean dispersal distance increasing more than twofold (from 1.6 to 3.8 m), and many distance dispersal events greater than the pre-fire maximum (7.55 m) being recorded. These changes were due primarily to longer foraging ranges of species of Iridomyrmex, most likely in response to the simplification of their foraging landscape. The significance of enhanced seed-removal rates and distance dispersal for seedling establishment is unclear because the benefits to plants in having their seeds dispersed by ants in northern Australia are poorly known. However, an enhanced removal rate would enhance any benefit of reduced predation by rodents. Similarly, the broader range of dispersal distances would appear to benefit plants in terms of reduced parent–offspring conflict and sibling competition, and the location of favourable seedling microsites. Given the high frequency of fire in Australian tropical savannas, enhanced benefits of seed dispersal by ants would apply for much of the year.  相似文献   

19.
Abstract: On the basis of a recent checklist of plant diversity in páramos, diaspores collected from herbaria were studied for adaptations to dispersal on animals and by water. This study shows that the páramo flora has a relatively high percentage of genera with morphological adaptations to epizoochorous and to hydrochorous diaspore dispersal. Genera with hooked and straight appendages are present throughout the páramo belt, while their number decreases in the higher páramo zones. About half of the hydrochorous genera and one-third of the epizoochorous ones can be found throughout all páramo zones. The contribution of holarctic epizoochorous genera to the páramo flora seems to be greater than that of austral-antarctic genera, whereas in hydrochorous genera it is the reverse.  相似文献   

20.
The central Australian flora currently contains 78 alien species, of which 17 are predominantly summer-growing, 19 are southern winter-growing species reaching roadsides, stockyards and watercourses in the southern Northern Territory and 42 are at present confined to gardens in Alice Springs. A further 11 species reach the far north of South Australia or die far southwest of Queensland but not the Northern Territory. The central Australian alien flora may be classified by growing season and drought-tolerance, or broadly categorized on the basis of habitat and dispersal agent into 'garden weeds', 'tourist weeds' and 'stock weeds'. Present ecological knowledge of central Australian aliens is limited, but indicates that whilst some will probably remain confined to better-watered habitats, many are likely to spread into the arid areas, becoming obvious only after a succession of wet years. The central Australian alien flora is increasing at present and this increase is expected to continue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号