首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Poleward and upward species range shifts are the most commonly anticipated and studied consequences of climate warming. However, these global responses to climate change obscure more complex distribution change patterns. We hypothesize that the spatial arrangement of mountain ranges and, consequently, climatic gradients in Europe, will result in range disjunctions. This hypothesis was investigated for submountainous forest plant species at two temporal and spatial scales: (i) under future climate change (between 1950–2000 and 2061–2080 periods) at the European scale and (ii) under contemporary climate change (between 1914–1987 and 1997–2013 periods) at the French scale. We selected 97 submountainous forest plant species occurring in France, among which distribution data across Europe are available for 25 species. By projecting future distribution changes for the 25 submountainous plant species across Europe, we demonstrated that range disjunction is a likely consequence of future climate change. To assess whether it is already taking place, we used a large forest vegetation‐plot database covering the entire French territory over 100 years (1914–2013) and found an average decrease in frequency (?0.01 ± 0.004) in lowland areas for the 97 submountainous species – corresponding to a loss of 6% of their historical frequency – along with southward and upward range shifts, suggesting early signs of range disjunctions. Climate‐induced range disjunctions should be considered more carefully since they could have dramatic consequences on population genetics and the ability of species to face future climate changes.  相似文献   

2.
Climate change is predicted to cause changes in species distributions and several studies report margin range shifts in some species. However, the reported changes rarely concern a species' entire distribution and are not always linked to climate change. Here, we demonstrate strong north‐eastwards shifts in the centres of gravity of the entire wintering range of three common waterbird species along the North‐West Europe flyway during the past three decades. These shifts correlate with an increase of 3.8 °C in early winter temperature in the north‐eastern part of the wintering areas, where bird abundance increased exponentially, corresponding with decreases in abundance at the south‐western margin of the wintering ranges. This confirms the need to re‐evaluate conservation site safeguard networks and associated biodiversity monitoring along the flyway, as new important wintering areas are established further north and east, and highlights the general urgency of conservation planning in a changing world. Range shifts in wintering waterbirds may also affect hunting pressure, which may alter bag sizes and lead to population‐level consequences.  相似文献   

3.
The upper altitude ecosystems of the Andes are among the most threatened by climate change. Computer models suggest that a large percentage of species in these ecosystems will be at risk of extinction and that avian communities will suffer disruption and impoverishment. Studies in other Andean countries lend some support to these predictions, but there are no quantitative data from Colombia appropriate to test these models. In 1991–1992, we conducted a bird survey in a high Andean cloud forest to gather information about the species present and their abundance. We attempted to replicate this earlier study 24 yr later to detect any changes in the avifauna and determine possible causes for those changes. From June 2015 to May 2016, we made bimonthly trips to the study site and identified all birds detected either visually or by voice along a number of trails. We supplemented our observational data by also capturing birds in mist‐nets. Community species richness and composition as well as the overall abundance of birds changed little from 1991–1992 to 2015–2016, but nearly 30% of bird species changed in abundance. Changes in the presence or abundance of nine or 10 species reflected upward shifts in elevational limits potentially due to climate change. However, most changes in abundance appeared to reflect changes in the vegetation of the study area due to successional changes in forest and subparamo habitats and a large number of relatively recent treefalls of old canopy trees with heavy epiphyte loads and subsequent changes in the understory vegetation. Our results suggest that the effects of climate change on the avifauna in our study area at a high‐altitude site in Colombia are apparently occurring more slowly than predicted by recent computer models, although we conclude that the possible effects of climate change should definitely be considered in future studies. However, single‐site studies such as ours have limitations in documenting elevation shifts; the most conclusive and quantitative evidence for elevational shifts comes from long‐term studies conducted over a wide range of elevations. As such, we recommend establishment of such a monitoring program in Colombia because data obtained from such a program might be important in designing measures to mitigate the effects of climate change and conserve biodiversity.  相似文献   

4.
There is good evidence that species' distributions are shifting poleward in response to climate change and wide interest in the magnitude of such responses for scientific and conservation purposes. It has been suggested from the directions of climatic changes that species' distribution shifts may not be simply poleward, but this has been rarely tested with observed data. Here, we apply a novel approach to measuring range shifts on axes ranging through 360°, to recent data on the distributions of 122 species of British breeding birds during 1988–1991 and 2008–2011. Although previously documented poleward range shifts have continued, with an average 13.5 km shift northward, our analysis indicates this is an underestimate because it ignores common and larger shifts that occurred along axes oriented to the north‐west and north‐east. Trailing edges contracted from a broad range of southerly directions. Importantly, these results are derived from systematically collected data so confounding observer‐effort biases can be discounted. Analyses of climate for the same period show that whilst temperature trends should drive species along a north–north‐westerly trajectory, directional responses to precipitation will depend on both the time of year that is important for determining a species' distribution, and the location of the range margin. Directions of species' range centroid shift were not correlated with spatial trends in any single climate variable. We conclude that range shifts of British birds are multidirectional, individualistic and probably determined by species‐specific interactions of multiple climate factors. Climate change is predicted to lead to changes in community composition through variation in the rates that species' ranges shift; our results suggest communities could change further owing to constituent species shifting along different trajectories. We recommend more studies consider directionality in climate and range dynamics to produce more appropriate measures of observed and expected responses to climate change.  相似文献   

5.
Aim Apparent anthropogenic warming has been underway in South Africa for several decades, a period over which significant range shifts have been observed in some indigenous bird species. We asked whether these range shifts by birds are clearly consistent with either climate change or land use change being the primary driver. Location South Africa. Methods We categorized recent range changes among 408 South African terrestrial bird species and, using generalized linear mixed models, analysed ecological attributes of those species that have and have not changed their ranges. Results Fifty‐six of the 408 taxa studied have undergone significant range shifts. Most extended their ranges towards the south (towards cooler latitudes, consistent with climate‐change drivers) or west (towards drier and warmer habitats, inconsistent with climate drivers but consistent with land use drivers); very few moved east or north. Both southward and westward movers were habitat generalists. Furthermore, southward movers were mobile taxa (migrants and nomads), whereas westward movers were associated with human‐modified elements in the landscape, such as croplands, plantations or buildings. Main conclusions The results suggest that both land use changes and climate change may simultaneously be influencing dynamic range shifts by South African birds, but separating the relative strengths of these two drivers is challenging, not least because both are operating concurrently and may influence some species simultaneously. Those species that respond to land use change by contracting their ranges are likely to be among the species that will be most impacted by climate change if land use practices with negative impacts are occurring in areas anticipated to become climatic refugia for these species. This highlights a pressing need to develop dynamic models of species’ potential range shifts and changing abundances that incorporate population and dispersal processes, as well as ecological processes that influence habitat suitability.  相似文献   

6.
Species richness is predicted to increase in the northern latitudes in the warming climate due to ranges of many southern species expanding northwards. We studied changes in the composition of the whole avifauna and in bird species richness in a period of already warming climate in Finland (in northern Europe) covering 1,100 km in south–north gradient across the boreal zone (over 300,000 km2). We compared bird species richness and species‐specific changes (for all 235 bird species that occur in Finland) in range size (number of squares occupied) and range shifts (measured as median of area of occupancy) based on bird atlas studies between 1974–1989 and 2006–2010. In addition, we tested how the habitat preference and migration strategy of species explain species‐specific variation in the change of the range size. The study was carried out in 10 km squares with similar research intensity in both time periods. The species richness did not change significantly between the two time periods. The composition of the bird fauna, however, changed considerably with 37.0% of species showing an increase and 34.9% a decrease in the numbers of occupied squares, that is, about equal number of species gained and lost their range. Altogether 95.7% of all species (225/235) showed changes either in the numbers of occupied squares or they experienced a range shift (or both). The range size of archipelago birds increased and long‐distance migrants declined significantly. Range loss observed in long‐distance migrants is in line with the observed population declines of long‐distance migrants in the whole Europe. The results show that there is an ongoing considerable species turnover due to climate change and due to land use and other direct human influence. High bird species turnover observed in northern Europe may also affect the functional diversity of species communities.  相似文献   

7.
Climate change has been shown to cause poleward range shifts of species. These shifts are typically demonstrated using presence–absence data, which can mask the potential changes in the abundance of species. Moreover, changes in the mean centre of weighted density of species are seldom examined, and comparisons between these two methods are even rarer. Here, we studied the change in the mean weighted latitude of density (MWLD) of 94 bird species in Finland, northern Europe, using data covering a north–south gradient of over 1000 km from the 1970s to the 2010s. The MWLD shifted northward on average 1.26 km yr?1, and this shift was significantly stronger in northern species compared to southern species. These shifts can be related to climate warming during the study period, because the annual temperature had increased more in northern Finland (by 1.7 °C) than in southern Finland (by 1.4 °C), although direct causal links cannot be shown. Density shifts of species distributed over the whole country did not differ from shifts in species situated on the edge of the species range in southern and northern species. This means that density shifts occur both in the core and on the edge of species distribution. The species‐specific comparison of MWLD values with corresponding changes in the mean weighted latitude using presence–absence atlas data (MWL) revealed that the MWLD moved more slowly than the MWL in the atlas data in the southern species examined, but more rapidly in the northern species. Our findings highlight that population densities are also moving rapidly towards the poles and the use of presence–absence data can mask the shift of population densities. We encourage use of abundance data in studies considering the effects of climate change on biodiversity.  相似文献   

8.
Shifts in species distributions are major fingerprint of climate change. Examining changes in species abundance structures at a continental scale enables robust evaluation of climate change influences, but few studies have conducted these evaluations due to limited data and methodological constraints. In this study, we estimate temporal changes in abundance from North American Breeding Bird Survey data at the scale of physiographic strata to examine the relative influence of different components of climatic factors and evaluate the hypothesis that shifting species distributions are multidirectional in resident bird species in North America. We quantify the direction and velocity of the abundance shifts of 57 permanent resident birds over 44 years using a centroid analysis. For species with significant abundance shifts in the centroid analysis, we conduct a more intensive correlative analysis to identify climate components most strongly associated with composite change of abundance within strata. Our analysis focus on two contrasts: the relative importance of climate extremes vs. averages, and of temperature vs. precipitation in strength of association with abundance change. Our study shows that 36 species had significant abundance shifts over the study period. The average velocity of the centroid is 5.89 km·yr?1. The shifted distance on average covers 259 km, 9% of range extent. Our results strongly suggest that the climate change fingerprint in studied avian distributions is multidirectional. Among 6 directions with significant abundance shifts, the northwestward shift was observed in the largest number of species (n = 13). The temperature/average climate model consistently has greater predictive ability than the precipitation/extreme climate model in explaining strata‐level abundance change. Our study shows heterogeneous avian responses to recent environmental changes. It highlights needs for more species‐specific approaches to examine contributing factors to recent distributional changes and for comprehensive conservation planning for climate change adaptation.  相似文献   

9.
Range shifts of many species are now documented as a response to global warming. But whether these observed changes are occurring fast enough remains uncertain and hardly quantifiable. Here, we developed a simple framework to measure change in community composition in response to climate warming. This framework is based on a community temperature index (CTI) that directly reflects, for a given species assemblage, the balance between low- and high-temperature dwelling species. Using data from the French breeding bird survey, we first found a strong increase in CTI over the last two decades revealing that birds are rapidly tracking climate warming. This increase corresponds to a 91 km northward shift in bird community composition, which is much higher than previous estimates based on changes in species range edges. During the same period, temperature increase corresponds to a 273 km northward shift in temperature. Change in community composition was thus insufficient to keep up with temperature increase: birds are lagging approximately 182 km behind climate warming. Our method is applicable to any taxa with large-scale survey data, using either abundance or occurrence data. This approach can be further used to test whether different delays are found across groups or in different land-use contexts.  相似文献   

10.
Temperature-based population segregation in birch   总被引:2,自引:0,他引:2  
Mean temperature of establishment years for warm‐ and cold‐year subpopulations of a naturally occurring stand of Betula pendula (birch) shows a difference equivalent to that between current temperatures and temperatures projected for 35–55 years hence, given ‘business as usual.’ The existence of ‘pre‐adapted’ individuals in standing tree populations would reduce temperature‐based advantages for invading species and, if general, bring into question assumptions currently used in models of global climate change. Our results demonstrate a methodology useful for investigating the important ecological issue of adaptation vs. range shifts as a means of response to climate change.  相似文献   

11.
Predicting and understanding the biological response to future climate change is a pressing challenge for humanity. In the 21st century, many species will move into higher latitudes and higher elevations as the climate warms. In addition, the relative abundances of species within local assemblages are likely to change. Both effects have implications for how ecosystems function. Few biodiversity forecasts, however, take account of both shifting ranges and changing abundances. We provide a novel analysis predicting the potential changes to assemblage‐level relative abundances in the 21st century. We use an established relationship linking ant abundance and their colour and size traits to temperature and UV‐B to predict future abundance changes. We also predict future temperature driven range shifts and use these to alter the available species pool for our trait‐mediated abundance predictions. We do this across three continents under a low greenhouse gas emissions scenario (RCP2.6) and a business‐as‐usual scenario (RCP8.5). Under RCP2.6, predicted changes to ant assemblages by 2100 are moderate. On average, species richness will increase by 26%, while species composition and relative abundance structure will be 26% and 30% different, respectively, compared with modern assemblages. Under RCP8.5, however, highland assemblages face almost a tripling of species richness and compositional and relative abundance changes of 66% and 77%. Critically, we predict that future assemblages could be reorganized in terms of which species are common and which are rare: future highland assemblages will not simply comprise upslope shifts of modern lowland assemblages. These forecasts reveal the potential for radical change to montane ant assemblages by the end of the 21st century if temperature increases continue. Our results highlight the importance of incorporating trait–environment relationships into future biodiversity predictions. Looking forward, the major challenge is to understand how ecosystem processes will respond to compositional and relative abundance changes.  相似文献   

12.
A growing body of literature seeks to explain variation in range shifts using species’ ecological and life‐history traits, with expectations that shifts should be greater in species with greater dispersal ability, reproductive potential, and ecological generalization. Despite strong theoretical support for species’ traits as predictors of range shifts, empirical evidence from contemporary range shift studies remains limited in extent and consensus. We conducted the first comprehensive review of species’ traits as predictors of range shifts, collecting results from 51 studies across multiple taxa encompassing over 11,000 species’ responses for 54 assemblages of taxonomically related species occurring together in space. We used studies of assemblages that directly compared geographic distributions sampled in the 20th century prior to climate change with resurveys of distributions after contemporary climate change and then tested whether species traits accounted for heterogeneity in range shifts. We performed a formal meta‐analysis on study‐level effects of body size, fecundity, diet breadth, habitat breadth, and historic range limit as predictors of range shifts for a subset of 21 studies of 26 assemblages with sufficient data. Range shifts were consistent with predictions based on habitat breadth and historic range limit. However, body size, fecundity, and diet breadth showed no significant effect on range shifts across studies, and multiple studies reported significant relationships that contradicted predictions. Current understanding of species’ traits as predictors of range shifts is limited, and standardized study is needed for traits to be valid indicators of vulnerability in assessments of climate change impacts.  相似文献   

13.
There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio‐climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs “hindcasting” of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species‐specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white‐beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time‐scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies.  相似文献   

14.
There is ample evidence for ecological responses to recent climate change. Most studies to date have concentrated on the effects of climate change on individuals and species, with particular emphasis on the effects on phenology and physiology of organisms as well as changes in the distribution and range shifts of species. However, responses by individual species to climate change are not isolated; they are connected through interactions with others at the same or adjacent trophic levels. Also from this more complex perspective, recent case studies have emphasized evidence on the effects of climate change on biotic interactions and ecosystem services. This review highlights the ‘knowns’ but also ‘unknowns’ resulting from recent climate impact studies and reveals limitations of (linear) extrapolations from recent climate-induced responses of species to expected trends and magnitudes of future climate change. Hence, there is need not only to continue to focus on the impacts of climate change on the actors in ecological networks but also and more intensively to focus on the linkages between them, and to acknowledge that biotic interactions and feedback processes lead to highly complex, nonlinear and sometimes abrupt responses.  相似文献   

15.
Aim Models relating species distributions to climate or habitat are widely used to predict the effects of global change on biodiversity. Most such approaches assume that climate governs coarse‐scale species ranges, whereas habitat limits fine‐scale distributions. We tested the influence of topoclimate and land cover on butterfly distributions and abundance in a mountain range, where climate may vary as markedly at a fine scale as land cover. Location Sierra de Guadarrama (Spain, southern Europe) Methods We sampled the butterfly fauna of 180 locations (89 in 2004, 91 in 2005) in a 10,800 km2 region, and derived generalized linear models (GLMs) for species occurrence and abundance based on topoclimatic (elevation and insolation) or habitat (land cover, geology and hydrology) variables sampled at 100‐m resolution using GIS. Models for each year were tested against independent data from the alternate year, using the area under the receiver operating characteristic curve (AUC) (distribution) or Spearman's rank correlation coefficient (rs) (abundance). Results In independent model tests, 74% of occurrence models achieved AUCs of > 0.7, and 85% of abundance models were significantly related to observed abundance. Topoclimatic models outperformed models based purely on land cover in 72% of occurrence models and 66% of abundance models. Including both types of variables often explained most variation in model calibration, but did not significantly improve model cross‐validation relative to topoclimatic models. Hierarchical partitioning analysis confirmed the overriding effect of topoclimatic factors on species distributions, with the exception of several species for which the importance of land cover was confirmed. Main conclusions Topoclimatic factors may dominate fine‐resolution species distributions in mountain ranges where climate conditions vary markedly over short distances and large areas of natural habitat remain. Climate change is likely to be a key driver of species distributions in such systems and could have important effects on biodiversity. However, continued habitat protection may be vital to facilitate range shifts in response to climate change.  相似文献   

16.
Recent decades have seen substantial changes in patterns of biodiversity worldwide. Simultaneously, climate change is producing a widespread pattern of species’ range shifts to higher latitudes and higher elevations, potentially creating novel assemblages as species shift at different rates. However, the direct link between species’ turnover as a result of climate‐induced range shifts has not yet been empirically evaluated. We measured rates of species turnover associated with species’ range shifts in relatively undisturbed montane areas in Asia, Europe, North America, South America, and the Indo‐Pacific. We show that species turnover is rapidly creating novel assemblages, and this can be explained by variable changes in species’ range limits following warming. Across all the areas we analyzed, mean species’ turnover was 12% per decade, which was nearly balanced between the loss of existing co‐occurrences and the gain of novel co‐occurrences. Turnover appears to be more rapid among ectothermic assemblages, and some evidence suggests tropical assemblages may be responding at more rapid rates than temperate assemblages.  相似文献   

17.
Waterbird species have different requirements with respect to their non‐breeding areas, aiming to survive and gain condition during the non‐breeding period. Selection of non‐breeding areas could change over time and space driven by climate change and species habitat requirements. To help explain the mechanism shaping non‐breeding area selection, we provide site‐specific analyses of distributional changes in wintering waterbirds in central Europe, located at the centre of their flyways. We use wintering waterbirds as a highly dynamic model group monitored over a long‐time scale of 50 years (1966–2015). We identified species habitat requirements and changes in habitat use at the level of 733 individual non‐breeding (specifically wintering) sites for 12 waterbird species using citizen‐science monitoring data. We calculated site‐specific mean numbers and estimated site‐specific trends in numbers. The site‐specific approach revealed a general effect of mean winter temperature of site (seven of 12 species), wetland type (all species) and land cover (all species) on site‐specific numbers. We found increasing site‐specific trends in numbers in the northern and/or eastern part of the study area (Mute Swan Cygnus olor, Eurasian Teal Anas crecca, Common Pochard Aythya ferina, Great Cormorant Phalacrocorax carbo and Eurasian Coot Fulica atra). Common Merganser Mergus merganser, Great Cormorant, Grey Heron Ardea cinerea, Common Pochard, Eurasian Coot and Common Moorhen Galinulla chloropus increased their site‐specific numbers on standing industrial waters with traditionally low fish stock. The site‐specific dynamics of bird numbers helped us to identify general preference for sites reducing winter harshness (warmer areas, running waters and more wetlands in the site vicinity), as well as indicating climate‐driven changes in spatial use of wintering sites (northern/north‐eastern range changes and changes in preference for industrial waters). This fine‐scale (site‐specific) approach can reveal large‐scale range and distribution shifts driven by climate and environmental changes regardless of the availability of large‐scale datasets.  相似文献   

18.
As range shifts coincident with climate change have become increasingly well documented, efforts to describe the causes of range boundaries have increased. Three mechanisms—genetic impoverishment, migration load, or a physical barrier to dispersal—are well described theoretically, but the data needed to distinguish among them have rarely been collected. We describe the distribution, abundance, genetic variation, and environment of Tetraclita rubescens, an intertidal barnacle that expanded its northern range limit by several hundreds of kilometres from San Francisco, CA, USA, since the 1970s. We compare geographic variation in abundance with abiotic and biotic patterns, including sea surface temperatures and the distributions of 387 co‐occurring species, and describe genetic variation in cytochrome c oxidase subunit I, mitochondrial noncoding region, and nine microsatellite loci from 27 locations between Bahia Magdalena (California Baja Sur, Mexico) and Cape Mendocino (CA, USA). We find very high gene flow, high genetic diversity, and a gradient in physical environmental variation coincident with the range limit. We infer that the primary cause of the northern range boundary in T. rubescens is migration load arising from flow of maladapted alleles into peripheral locations and that environmental change, which could have reduced selection against genotypes immigrating into the newly colonized portion of the range, is the most likely cause of the observed range expansion. Because environmental change could similarly affect all taxa in a region whose distributional limits are established by migration load, these mechanisms may be common causes of range boundaries and largely synchronous multi‐species range expansions.  相似文献   

19.
Phenological changes in response to climate change have been recorded in many taxa, but the population‐level consequences of these changes are largely unknown. If phenological change influences demography, it may underpin the changes in range size and distribution that have been associated with climate change in many species. Over the last century, Icelandic black‐tailed godwits (Limosa limosa islandica) have increased 10‐fold in numbers, and their breeding range has expanded throughout lowland Iceland, but the environmental and demographic drivers of this expansion remain unknown. Here, we explore the potential for climate‐driven shifts in phenology to influence demography and range expansion. In warmer springs, Icelandic black‐tailed godwits lay their clutches earlier, resulting in advances in hatching dates in those years. Early hatching is beneficial as population‐wide tracking of marked individuals shows that chick recruitment to the adult population is greater for early hatched individuals. Throughout the last century, this population has expanded into progressively colder breeding areas in which hatch dates are later, but temperatures have increased throughout Iceland since the 1960s. Using these established relationships between temperature, hatching dates and recruitment, we show that these warming trends have the potential to have fueled substantial increases in recruitment throughout Iceland, and thus to have contributed to local population growth and expansion across the breeding range. The demographic consequences of temperature‐mediated phenological changes, such as the advances in lay dates and increased recruitment associated with early hatching reported here, may therefore be key processes in driving population size and range changes in response to climate change.  相似文献   

20.
Aim Existing climate envelope models give an indication of broad scale shifts in distribution, but do not specifically provide information on likely future population changes useful for conservation prioritization and planning. We demonstrate how these techniques can be developed to model likely future changes in absolute density and population size as a result of climate change. Location Great Britain. Methods Generalized linear models were used to model breeding densities of two northerly‐ and two southerly‐distributed bird species as a function of climate and land use. Models were built using count data from extensive national bird monitoring data and incorporated detectability to estimate absolute abundance. Projections of likely future changes in the distribution and abundance of these species were made by applying these models to projections of future climate change under two emissions scenarios. Results Models described current spatial variation in abundance for three of the four species and produced modelled current estimates of national populations that were similar to previously published estimates for all species. Climate change was projected to result in national population declines in the two northerly‐distributed species, with declines for Eurasian curlew Numenius arquata projected to be particularly severe. Conversely, the abundances of the two southerly distributed species were projected to increase nationally. Projected maps of future abundance may be used to identify priority areas for the future conservation of each species. Main conclusions The analytical methods provide a framework to make projections of impacts of climate change on species abundance, rather than simply projected range changes. Outputs may be summarized at any spatial scale, providing information to inform future conservation planning at national, regional and local scales. Results suggest that as a consequence of climate change, northerly distributed bird species in Great Britain are likely to become an increasingly high conservation priority within the UK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号