首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
NOG-8 ras cells are a normal mouse mammary epithelial cell line transfected with a plasmid containing a glucocorticoid-inducible mouse mammary tumor virus long terminal repeat linked to the activated c-Ha-ras protooncogene. After addition of dexamethasone, there is a rapid induction (within 1-3 h) of p21ras protein that is concomitant with a parallel induction of the c-Ha-ras specific mRNA. After 4-6 days of dexamethasone treatment, NOG-8 ras cells are able to grow as colonies in semisolid medium. Between 9 and 12 days of dexamethasone treatment, there is a 5- to 6-fold increase of transforming growth factor alpha (TGF alpha) activity in the conditioned medium from NOG-8 ras cells. A 60-65% reduction in epidermal growth factor cell surface receptors on NOG-8 ras cells also occurs during this time interval. A 3- to 4-fold increase of the expression of a specific TGF alpha mRNA can be detected within 2 days of dexamethasone treatment, preceding the increase in TGF alpha protein found in the conditioned medium. Exogenous TGF alpha is able to stimulate in a dose-dependent fashion the anchorage-dependent and anchorage-independent growth of NOG-8 ras cells to a level comparable to that observed in dexamethasone treated ras-transformed NOG-8 ras cells. These results suggest that the enhanced expression of TGF alpha after induction of an activated ras protooncogene may be necessary for the anchorage-independent growth and subsequent morphological changes and the enhanced growth rate observed in ras-transformed mammary epithelial cells.  相似文献   

2.
Platelet-derived growth factor (PDGF) stimulation of NIH 3T3 cells leads to the rapid tyrosine phosphorylation of the GTPase-activating protein (GAP) and an associated 64- to 62-kDa tyrosine-phosphorylated protein (p64/62). To assess the functions of these proteins, we evaluated their phosphorylation state in normal NIH 3T3 cells as well as in cells transformed by oncogenically activated v-H-ras or overexpression of c-H-ras genes. No significant GAP tyrosine phosphorylation was observed in unstimulated cultures, while PDGF-BB induced rapid tyrosine phosphorylation of GAP in all cell lines analyzed. In NIH 3T3 cells, we found that PDGF stimulation led to the recovery of between 37 and 52% of GAP molecules by immunoprecipitation with monoclonal antiphosphotyrosine antibodies. Furthermore, PDGF exposure led to a rapid and sustained increase in the levels of p21ras bound to GTP, with kinetics similar to those observed for GAP tyrosine phosphorylation. The PDGF-induced increases in GTP-bound p21ras in NIH 3T3 cells were comparable to the steady-state level observed in serum-starved c-H-ras-overexpressing transformants, conditions in which these cells maintained high rates of DNA synthesis. These results imply that the level of p21ras activation following PDGF stimulation of NIH 3T3 cells is sufficient to support mitogenic stimulation. Addition of PDGF to c-H-ras-overexpressing cells also resulted in a rapid and sustained increase in GTP-bound p21ras. In these cells GAP, but not p64/62, showed increased tyrosine phosphorylation, with kinetics similar to those observed for increased GTP-bound p21ras. All of these findings support a role for GAP tyrosine phosphorylation in p21ras activation and mitogenic signaling.  相似文献   

3.
It has been shown previously in T cells that stimulation of protein kinase C or the T cell antigen receptor leads to a rapid and persistent activation of p21ras as measured by a dramatic increase in the amount of bound GTP. These stimuli are also known to induce the expression of the T lymphocyte growth factor, interleukin-2 (IL-2), an essential growth factor for the immune system. Receptor induced activation of p21ras has been demonstrated in several cell types but involvement of protein kinase C as an upstream activator of p21ras appears to be unique to T cells. In this study we show that p21ras acts as a component of the protein kinase C and T cell antigen receptor downstream signalling pathway controlling IL-2 gene expression. In the murine T cell line EL4, constitutively active p21ras greatly potentiates the phorbol ester and T cell receptor agonist induced production of IL-2 as measured both by biological assay for the cytokine and by the use of a reporter construct. Active p21ras also partially replaces the requirement for protein kinase C activation in synergizing with a calcium ionophore to induce production of IL-2. Furthermore, using a dominant negative mutant of ras, Ha-rasN17, we show that endogenous ras function is essential for induction of IL-2 expression in response to protein kinase C or T cell receptor stimulation. Activation of ras proteins is thus a necessary but not sufficient event in the induction of IL-2 synthesis. Ras proteins are therefore pivotal signalling molecules in T cell activation.  相似文献   

4.
Erythropoietin is the major regulator of the proliferation and differentiation of erythroid precursors, but little is known about its molecular mechanism of action. Using a human erythroleukemic cell line (HEL), we investigated whether p21ras is involved in erythropoietin signal transduction. We found that stimulation of HEL cells with erythropoietin induces a 5-fold increase in the amount of GTP bound to the endogenous p21ras. This effect is dose-dependent and occurs very rapidly. We also observed that erythropoietin causes tyrosine phosphorylation of several proteins in a time-dependent manner that correlates with the p21ras activation. Moreover, inhibition of tyrosine kinases by genistein totally prevents the erythropoietin-induced accumulation of a p21ras.GTP complex. By using an antiserum against the GTPase-activating protein, we found that p120GAP is rapidly phosphorylated in tyrosine in response to erythropoietin. Furthermore, the ability of a lysate from erythropoietin-stimulated HEL cells to induce in vitro hydrolysis of GTP bound to p21ras was strongly reduced. These results demonstrate that activation of p21ras is an early event in the erythropoietin signal transduction pathway, and they suggest that accumulation of the p21ras.GTP complex may be triggered by inhibition of GTPase-activating protein activity.  相似文献   

5.
An enhanced expression of transforming growth factor-alpha (TGF alpha) was demonstrated in two clones of NOG-8 mouse mammary epithelial cells, NOG-8 SR1 and NOG-8 SR2, that have been transformed by a v-Ha-ras oncogene. The amount of TGF alpha production in NOG-8 SR1 and NOG-8 SR2 cells was dependent on the level of p21ras expression in these clones, which directly correlated with their cloning efficiency in soft agar. There was also a decrease in the number of epidermal growth factor (EGF) receptors on the NOG-8 SR1 and NOG-8 SR2 cells that is proportional to the amount of TGF alpha secreted. These effects were specific for ras because neu-transformed NOG-8 cells grew in soft agar at a comparable level to NOG-8 SR2 cells yet did not show any increase in TGF alpha production or change in EGF receptor expression.  相似文献   

6.
A GTP-binding protein with an apparent molecular weight of 25 kDa was detected in hepatocyte extracts using SDS-PAGE and [alpha-32P]GTP. p21ras proteins could only be detected by immunological analysis. The amounts of p21ras proteins present in isolated hepatocytes and in a highly purified preparation of liver plasma membrane vesicles were 0.3 and 4 ng p21ras protein/micrograms membrane protein, respectively. In comparison with the total cell extract, the degree of enrichment of plasma membrane vesicles with p21ras was similar to that of 5'-nucleotidase. The p21ras proteins were tightly associated with the membrane. Treatment of [3H]choline-labelled plasma membranes with an excess concentration of the anti-p21ras antibody Y13-259 failed to inhibit either basal or guanosine 5'-[gamma-thio]triphosphate (GTP[S])-stimulated [3H]choline release. It is concluded that in hepatocytes (a) the majority of p21ras is bound to the plasma membrane and (b) p21ras is not directly involved in the activation by GTP[S] of phospholipase D.  相似文献   

7.
Tumor cell lines derived from malignant schwannomas removed from patients with neurofibromatosis type 1 (NF1) have been examined for the level of expression of NF1 protein. All three NF1 lines examined expressed lower levels of NF1 protein than control cells, and the level in one line was barely detectable. The tumor lines expressed normal levels of p120GAP and p21ras. Although the p21ras proteins isolated from the tumor cells had normal (nonmutant) biochemical properties in vitro, they displayed elevated levels of bound GTP in vivo. The level of total cellular GAP-like activity was reduced in extracts from the tumor line that expresses very little NF1 protein. Introduction of the catalytic region of GAP into this line resulted in morphological reversion and lower in vivo GTP binding by endogenous p21ras. These data implicate NF1 protein as a tumor suppressor gene product that negatively regulates p21ras and define a "positive" growth role for ras activity in NF1 malignancies.  相似文献   

8.
We demonstrate that stimulation of primary cultures of endothelial cells with vascular endothelial cell growth factor (VEGF) results in a rapid increase in labeled guanine nucleotide bound to p21ras. Surprisingly, although VEGF stimulates ras activity, adenoviral-mediated gene transfer of a dominant negative form of ras (N17ras) had no effect on VEGF-stimulated mitogen-activated protein kinase (MAPK) activity. In contrast, treatment of endothelial cells with two structurally unrelated inhibitors of protein kinase C (PKC) abrogated VEGF-stimulated MAPK activity. In addition, inhibition of ras-Raf interactions by expression of a truncated form of Raf containing only the ras binding domain blocked VEGF-stimulated MAPK activation. These results suggest that VEGF stimulation of MAPK in endothelial cells differs from the pathway used by other members of the receptor tyrosine kinase family. In contrast, analogous to certain G-coupled receptors, VEGF appears to activate MAPK through a PKC-dependent pathway that requires a stable ras-Raf interaction but is not inhibited by N17ras expression.  相似文献   

9.
A number of growth factors, including insulin and epidermal growth factor (EGF), induce accumulation of the GTP-bound form of p21ras. This accumulation could be caused either by an increase in guanine nucleotide exchange on p21ras or by a decrease in the GTPase activity of p21ras. To investigate whether insulin and EGF affect nucleotide exchange on p21ras, we measured binding of [alpha-32P]GTP to p21ras in cells permeabilized with streptolysin O. For this purpose, we used a cell line which expressed elevated levels of p21 H-ras and which was highly responsive to insulin and EGF. Stimulation with insulin or EGF resulted in an increase in the rate of nucleotide binding to p21ras. To determine whether this increased binding rate is due to the activation of a guanine nucleotide exchange factor, we made use of the inhibitory properties of a dominant negative mutant of p21ras, p21ras (Asn-17). Activation of p21ras by insulin and EGF in intact cells was abolished in cells infected with a recombinant vaccinia virus expressing p21ras (Asn-17). In addition, the enhanced nucleotide binding to p21ras in response to insulin and EGF in permeabilized cells was blocked upon expression of p21ras (Asn-17). From these data, we conclude that the activation of a guanine nucleotide exchange factor is involved in insulin- and EGF-induced activation of p21ras.  相似文献   

10.
M S Qiu  S H Green 《Neuron》1991,7(6):937-946
Activation of p21ras, demonstrated directly as an increase in p21ras-associated GTP, was induced rapidly but transiently by both nerve growth factor (NGF) and epidermal growth factor (EGF) in PC12 cells. The factors activate p21ras to equal extents and with virtually identical time courses. Growth factor-induced p21ras activation and tyrosine phosphorylation have similar time courses and sensitivities to genistein inhibition, indicating that p21ras activation is a result of tyrosine kinase activity. Furthermore, PC12 mutants lacking the Trk NGF receptor tyrosine kinase also lack NGF-inducible p21ras activation. The protein kinase inhibitor K252a and the methyltransferase inhibitor MTA abolish NGF-induced, but not EGF-induced, p21ras activation--effects correlated with inhibition only of NGF-induced tyrosine phosphorylation. In spite of differences in sensitivity to genistein, MTA, and K252a, EGF- and NGF-stimulated p21ras activation are not additive, implying that they do share at least one step in common.  相似文献   

11.
Transforming growth factor beta1 (TGF beta 1) plays important roles in the regulation of cell growth and differentiation in both normal and malignant prostate epithelial cells. Although certain pathways have been suggested, the mechanisms responsible for the action of TGF beta 1 are not well understood. In the present study, using a human papilloma virus 16 E6/E7 immortalized prostate epithelial cell line, HPr-1, we report that TGF beta 1 was able to suppress the expression of Id-1, a helix-loop-helix (HLH) protein, which plays important roles in the inhibition of cell differentiation and growth arrest. In addition, a decrease at both Id-1 mRNA and protein expression levels was associated with TGF beta 1-induced growth arrest and differentiation, indicating that Id-1 may be involved in TGF beta 1 signaling pathway. The fact that up-regulation of p21(WAF1), one of the downstream effectors of Id-1, was observed after exposure to TGF beta 1 further indicates the involvement of Id-1 in the TGF beta 1-induced growth arrest in HPr-1 cells. However, increased expression of p27(KIP1) was also observed in the TGF beta 1-treated cells, suggesting that in addition to down-regulation of Id-1, other factors may be involved in the TGF beta 1-induced cell growth arrest and differentiation in prostate epithelial cells. Our results provide evidence for the first time that TGF beta 1 may be one of the upstream regulators of Id-1.  相似文献   

12.
We showed previously that upon insulin stimulation of an insulin receptor overexpressing cell line, most of the p21ras was rapidly converted into the GTP bound state (Burgering, B. M. T., Medema, R. H., Maassen, J. A., Van de Wetering, M. L., Van der Eb, A. J., McCormick, F., and Bos, J. L. (1991) EMBO J. 10, 1103-1109). To determine whether this process also occurs in cells expressing physiologically relevant numbers of insulin receptors, insulin stimulated Ras.GTP formation was quantitated in Chinese hamster ovary (CHO)-derived cell lines expressing varying numbers of insulin receptors. In the parental CHO9 cells, expressing only 5.10(3) insulin receptors, insulin stimulation for 3 min increased Ras.GTP levels with 10%. Upon increasing the number of insulin receptors in these cells, Ras.GTP levels increased almost proportionally until a plateau value of 60% is reached at high receptor numbers. These data show that receptor overexpression is not a prerequisite for insulin-stimulated Ras.GTP formation. The yield of Ras.GTP generated is 0.2-1.0 mol/mol autophosphorylated insulin receptor in CHO9- and NIH3T3-derived cell lines, respectively. These values argue against signal-amplifying processes between the insulin receptor and p21ras. To determine whether receptor autophosphorylation is required for Ras.GTP formation, NIH3T3 cells overexpressing insulin receptors were stimulated with a monoclonal antibody which activates the receptor and subsequent glucose transport without inducing detectable autophosphorylation. Also, CHO cells expressing the mutant Ser1200 receptor, which has markedly impaired tyrosyl autophosphorylation but is capable of mediating insulin-stimulated metabolic effects in CHO cells, were used. In both cases, no Ras.GTP formation was observed. Furthermore, Rat-1-derived cell lines expressing mutant p21ras, which is permanently in the active GTP-bound form, still responded to insulin by increasing the glucose uptake. These results support our hypothesis that Ras.GTP formation is activated by the tyrosyl-phosphorylated insulin receptor and suggest that an active Ras.GTP complex does not mediate metabolic signaling.  相似文献   

13.
Transforming growth factor beta 1 (TGF beta 1) inhibits the proliferative response of mink lung epithelial cells (CCL64) to serum and to epidermal growth factor (EGF). This response to TGF beta 1 can be inhibited by prior exposure of the cells to nanogram concentrations of pertussis toxin (PT), suggesting the involvement of a guanine-nucleotide-binding regulatory protein (G-protein) in mediating TGF beta 1-induced growth inhibition. To characterize further this G-protein dependence, we have isolated, by chemical mutagenesis, a CCL64 variant (CCL64-D1) that is resistant to TGF beta 1. Whereas in the parental CCL64 cells TGF beta 1 stimulates both GTP[35S] (guanosine 5'-[gamma-[35S]thio]triphosphate) binding and GTPase activity, in the CCL64-D1 variants TGF beta 1 is without effect. Quantitative immunoblotting with antisera for G-protein alpha- and beta-subunits, as well as PT-catalysed ADP-ribosylation analyses, revealed no appreciable changes in the level of G-protein expression in the CCL64-D1 variants compared with parental cells. In contrast with another TGF beta-resistant clone, MLE-M, which we show lacks detectable type I receptor protein, the CCL64-D1 cells retain all three TGF beta cell-surface binding proteins. On the basis of these studies, we propose that a necessary component of TGF beta 1-mediated growth inhibition in CCL64 epithelial cells is the coupling of TGF beta 1 receptor binding to G-protein activation.  相似文献   

14.
15.
In fibroblasts, stimulation of receptor tyrosine kinases results in the activation of the extracellular signal-regulated kinase 2 (ERK2). The major signalling pathway employed by these receptors involves the activation of p21ras and raf-1 kinase. Here we show that in NIH3T3 and rat-1 fibroblasts, elevation of the intracellular cAMP level results in the inhibition of ERK2 activation induced by PDGF, EGF and insulin treatment. Analysis of various signalling intermediates shows that cAMP interferes at a site downstream of p21ras, but upstream of raf-1 kinase. Inhibition by cAMP depends on both the cAMP concentration and the absolute amount of p21ras molecules bound to GTP, suggesting a mechanism of competitive inhibition. Also TPA-induced, p21ras-independent, activation of raf-1 kinase and ERK2 is inhibited by cAMP. We have used the inhibitory effect of cAMP to investigate whether phosphorylation of mSos, a p21ras nucleotide exchange factor, is dependent on the activity of the raf-1 kinase/ERK2 pathway. We found that phosphorylation of mSos, as monitored by a mobility shift, is delayed with respect to p21ras and ERK2 activation and is inhibited by cAMP in a similar cell type- and concentration-dependent manner as the inactivation of ERK2. These results provide evidence for a model of p21ras-directed signalling towards ERK2 that feeds back on mSos by regulating its phosphorylation status and that can be negatively modulated by protein kinase A and positively modulated by protein kinase C action.  相似文献   

16.
The effects of epidermal growth factor transforming growth factor beta (TGF beta) and other growth factors on the proliferation and differentiation of a cell line derived from rat intestinal crypt epithelium (IEC-6) were defined. Incorporation of [3H]-thymidine was stimulated 1.4-2.4 fold by insulin, insulin like growth factor (IGF), platelet derived growth factor (PDGF), epidermal growth factor (EGF) and 2% fetal calf serum (FCS) respectively. Additive stimulation was observed when FCS was supplemented by insulin,IGF-I or PDGF but not EGF. Incorporation of [3H]-thymidine by IEC-6 was strongly inhibited by TGF beta with greater than 80% inhibition of incorporation at concentration approximately equal to 2.0 pM. IEC-6 cells bound 4.1 +/- 0.15 X 10(4) molecules TGF beta/cell and appeared to have only a single class of high affinity receptors (Kd approximately equal to 0.5 pM). TGF beta inhibition was unaffected by the presence of insulin or IGF-I suggesting it inhibits proliferation at a step subsequent to that at which these growth factors stimulate [3H]-thymidine incorporation. TGF beta also reduced the stimulation induced by FCS by 65%. In contrast EGF reduced TGF beta inhibition by 60%. IEC-6 cells demonstrated the appearance of sucrase activity after greater than 18 hours treatment with TGF beta. These findings suggest that TGF beta may inhibit proliferative activity and promote the development of differentiated function in intestinal epithelial cells.  相似文献   

17.
18.
The T cell growth factor IL-2 induces T cell progression through the cell cycle and ultimately controls T cell mitosis. Here we show that the guanine nucleotide-binding proteins p21ras may be involved in IL-2 signal transduction pathways. IL-2 causes a rapid and prolonged activation of p21ras in both murine and human T cells. The concentration-dependence of IL-2-mediated stimulation of p21ras correlated with IL-2 stimulation of T cell proliferation, which indicates that p21ras activity can be controlled by signals generated via the interaction between IL-2 and its high affinity cellular receptor. These results suggest that p21ras may play a role in the regulation of T cell growth by IL-2.  相似文献   

19.
The dual effect of the ubiquitous inflammatory cytokine transforming growth factor beta1 (TGF beta) on cellular proliferation and tumor metastasis is intriguing but complex. In epithelial cell- and neural cell-derived tumors, TGF beta serves as a growth inhibitor at the beginning of tumor development but later becomes a growth accelerator for transformed tumors. The somatostatin (SST) signaling pathway is a well-established antiproliferation signal, and in this report, we explore the interplay between the SST and TGF beta signaling pathways in the human neuroendocrine tumor cell line BON. We defined the SST signaling pathway as a determinant for neuroendocrine tumor BON cells in responding to TGF beta as a growth inhibitor. We also determined that TGF beta induces the production of SST and potentially activates the negative growth autocrine loop of SST, which leads to the downstream induction of multiple growth inhibitory effectors: protein tyrosine phosphatases (i.e., SHPTP1 and SHPTP2), p21(Waf1/Cip1), and p27(Kip1). Concurrently, TGF beta down-regulates the growth accelerator c-Myc protein and, collectively, they establish a firm antiproliferation effect on BON cells. Additionally, any disruption in the activation of either the TGF beta or SST signaling pathway in BON leads to "reversible" neuroendocrine-mesenchymal transition, which is characterized by the loss of neuroendocrine markers (i.e., chromogranin A and PGP 9.5), as well as the altered expression of mesenchymal proteins (i.e., elevated vimentin and Twist and decreased E-cadherin), which has previously been associated with elevated metastatic potential. In summary, TGF beta-dependent growth inhibition and differentiation is mediated by the SST signaling pathway. Therefore, any disruption of this TGF beta-SST connection allows BON cells to respond to TGF beta as a growth accelerator instead of a growth suppressor. This model can potentially apply to other cell types that exhibit a similar interaction of these pathways.  相似文献   

20.
We have carried out photoaffinity labeling of the ras p21 protein, a ras oncogene product, with [alpha-32P]GTP. Based on our studies, a sensitive, rapid, and specific assay for the detection of multiple forms of ras p21 has been developed. The specificity of this protocol is shown by (a) sensitivity of affinity labeling of ras p21 to known inhibitors of GTP binding and (b) immunoprecipitation of affinity labeled protein with anti-ras p21 serum. Detection and semiquantitation of ras p21 by this method is accomplished in less than 24 h and requires as little as 100,000 cells or about 5 mg of tissue sample from skin tumor, liver, and mammary tumor tissues. Furthermore, using this approach, we were able to detect the selective loss of one species of ras p21 in transplanted Morris hepatoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号