共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
胆固醇代谢异常和Aβ沉积与阿尔茨海默病(AD)的发生发展密切相关。肝X受体(LXR)和类视黄醇X受体(RXR)介导的三磷酸腺苷结合盒A1(ABCA1)跨膜转运胆固醇体系在维持细胞内外胆固醇平衡中发挥重要作用,并参与Aβ的转运、沉积和老年斑的形成,其中的关键介导物质有望成为AD治疗的新靶点。 相似文献
3.
ABCA1在动脉粥样硬化发生与发展中的作用 总被引:16,自引:0,他引:16
腺苷三磷酸结合盒转运体A1(ATP binding cassette transporter A1 ,ABCA1)是一种整合膜蛋白,它以ATP为能源,促进细胞内游离胆固醇和磷脂的流出,在胆固醇逆转运(RCT)和HDL生成的起始步骤中起重要作用,被称作RCT守门人。核受体PPARs、LXRs和FXR对ABCA1蛋白的表达具有调控作用。人体50种组织中存在有ABCA1 mRNA,在胰、肝、肺、肾上腺和胎儿组织中ABCAl表达水平最高,ABCAl功能障碍将导致巨噬细胞内大量的胆固醇沉积而成为泡沫细胞,继而漫润血管壁,促进As的发生发展。 相似文献
4.
目的:研究ATP结合盒转运体A1(ABCA1)在多种糖尿病特有因素刺激下在巨噬细胞中的表达,以及PPARγ激动剂干预后其表达的变化,探讨ABCA1及PPARγ在糖尿病大血管并发症发展中的作用机制。从而为研究糖尿病大血管并发症的发生机制及防治提供一定的理论依据。方法:以巨噬细胞为研究对象,体外模拟糖尿病状态,分别以高葡萄糖、高胰岛素和糖基化终末产物刺激巨噬细胞,检测细胞中ABCA1表达的变化;以PPARγ激动剂预处理巨噬细胞后,再以上述因素刺激细胞,分别检测巨噬细胞中ABCA1的表达并比较。结果:高葡萄糖、高胰岛素和糖基化终末产物(AGE)可作为独立因素,导致细胞中ABCA1表达减少(P〈0.05)。PPARγ激动剂预处理后,ABCA1表达量增加(P〈0.05)。结论:糖尿病状态下,一些糖尿病特有的刺激因素如:高葡萄糖、高胰岛素和糖基化终末产物等作为独立因素使ABCA1表达减少,可能是糖尿病患者动脉粥样硬化发生率较非糖尿病人群增高的原因。PPARγ激动剂干预后,糖尿病状态下ABCA1的表达增加,这提示我们应用PPARγ激动剂可能延缓糖尿病患者动脉硬化进展。 相似文献
5.
2型糖尿病属于代谢性疾病,它的发生发展受环境因素和多种基因的共同调控.近年来研究认为2型糖尿病属于代谢性炎症,可能是由细胞因子介导的一种慢性炎症反应性疾病.胰岛作为胰岛素的分泌器官,它的异常是2型糖尿病发病进程中的一个重要病理基础.长期的高糖,高脂及巨噬细胞浸润等因素都会刺激细胞因子的大量生成,造成胰岛β细胞的炎症反应,对胰岛β细胞分泌胰岛素的功能和细胞活力产生不同程度的损伤,导致其功能障碍和凋亡,进而促使2型糖尿病的发生发展.本文根据国内外近几年的研究进展,进一步了探讨胰岛β细胞炎症与2型糖尿病的关系.这种代谢性炎症的研究,进一步阐明了炎症的发生,引起胰岛素抵抗、功能障碍的具体机制,革新了对2型糖尿病发病机理的认识,并为2型糖尿病的防治提供了新的方向. 相似文献
6.
LXR和ABCA1对体内胆固醇代谢的调节作用 总被引:12,自引:0,他引:12
肝外组织胆固醇返回肝脏,在肝脏通过生成胆汁酸排出,这一过程称为胆固醇逆转运。研究表明LXRs在维持体内胆固醇平衡方面起着感受器作用,通过关键靶基因转录的控制来调节胆固醇分解、储存、吸收和转运。LXR和RXR激动剂可上调巨噬细胞三磷酸腺苷结合盒转运体A1和G1(ABCAl,ABCGl)的表达,导致细胞内胆固醇流出。以LXR作为靶点的药物将为治疗高胆固醇血症和抗As提供新的希望。 相似文献
7.
8.
ZnT8(zinc transporter,member8)是锌离子转运蛋白,主要定位于胰岛β细胞,能将胞浆锌离子转运至胰岛素储存/分泌性囊泡内,其转运功能降低会影响胰岛素合成、储存和分泌,能增加2型糖尿病(T2DM)的发病风险。ZnT8蛋白也可作为抗原引起β细胞自身免疫损伤,诱发1型糖尿病(T1DM)。ZnT8基因多态性是引起其锌离子转运功能和免疫原性变化的重要因素,与糖尿病的发生、发展密切相关。该文综述了ZnT8与T1DM和T2DM的研究进展,提示ZnT8可作为糖尿病防治的新药物靶点。 相似文献
9.
10.
《微生物学免疫学进展》2019,(6)
1型糖尿病(type 1 diabetes mellitus,T1DM)是一种终身代谢性疾病,多见于青少年和儿童,严重影响青少年和儿童的生活质量,给患者家庭和社会带来严重的经济负担。T1DM由多病因引起,其中机体胰岛β细胞损伤导致胰岛素分泌不足是T1DM的主要发病原因。胰岛β细胞的氧化应激(oxidative stress,OS)反应在其损伤过程中发挥了重要作用,因此研究机体的OS反应在胰岛β细胞损伤中的作用显得尤为重要。现就机体OS反应产生机制及其在胰岛β细胞损伤中的作用与作用机制作一综述,为进一步认识T1DM的发病机制提供理论依据。 相似文献
11.
正三磷酸腺苷结合盒转运体A1(ATP-binding cassette transporter A1,ABCA1)作为介导细胞内脂质流出,维持细胞脂质代谢平衡的重要跨膜蛋白,对动脉粥样硬化(atherosclerosis,AS)的防治具有重要意义[1].近日,清华大学结构生物学高精尖创新中心的颜宁教授与龚欣博士组成的研究团队(Cell,2017,169:1228-1239)采用冷冻电子显微镜技术,经过重组人全长ABCA1蛋白制备、透射电子显微 相似文献
12.
Temporal and spatial changes of membrane lipid distribution in the plasma membrane are thought to be important for various cellular functions. ATP-Binding Cassette A1 (ABCA1) is a key lipid transporter for the generation of high density lipoprotein. Recently, we reported that ABCA1 maintains an asymmetric distribution of cholesterol in the plasma membrane. Here we report that ABCA1 suppresses cell migration by modulating signal pathways. ABCA1 knockdown in mouse embryonic fibroblasts accelerated cell migration and increased activation of Rac1 and its localization to detergent-resistant membranes. Phosphorylation of MEK and ERK also increased. Inhibition of Rac1 or MEK-ERK signals suppressed cell migration in ABCA1 knockdown cells. Because our experimental conditions for cell migration did not contain cholesterol or lipid acceptors for ABCA1, cellular cholesterol content was not changed. These data suggest that ABCA1 modulates cell migration via Rac1 and MEK-ERK signaling by altering lipid distribution in the plasma membrane. 相似文献
13.
Herman J. Kempen Monica Gomaraschi S. Eralp Bellibas Stephanie Plassmann Brad Zerler Heidi L. Collins Steven J. Adelman Laura Calabresi Peter L. J. Wijngaard 《Journal of lipid research》2013,54(9):2341-2353
MDCO-216, a complex of dimeric recombinant apoA-IMilano (apoA-IM) and palmitoyl-oleoyl-phosphatidylcholine (POPC), was administered to cynomolgus monkeys at 30, 100, and 300 mg/kg every other day for a total of 21 infusions, and effects on lipids, (apo)lipoproteins, and ex-vivo cholesterol efflux capacity were monitored. After 7 or 20 infusions, free cholesterol (FC) and phospholipids (PL) were strongly increased, and HDL-cholesterol (HDL-C), apoA-I, and apoA-II were strongly decreased. We then measured short-term effects on apoA-IM, lipids, and (apo)lipoproteins after the first or the last infusion. After the first infusion, PL and FC went up in the HDL region and also in the LDL and VLDL regions. ApoE shifted from HDL to LDL and VLDL regions, while ApoA-IM remained located in the HDL region. On day 41, ApoE levels were 8-fold higher than on day 1, and FC, PL, and apoE resided mostly in LDL and VLDL regions. Drug infusion quickly decreased the endogenous cholesterol esterification rate. ABCA1-mediated cholesterol efflux on day 41 was markedly increased, whereas scavenger receptor type B1 (SRB1) and ABCG1-mediated effluxes were only weakly increased. Strong increase of FC is due to sustained stimulation of ABCA1-mediated efflux, and drop in HDL and formation of large apoE-rich particles are due to lack of LCAT activation. 相似文献
14.
Nobukiyo Tanaka Sumiko Abe-Dohmae Noriyuki Iwamoto Michael L. Fitzgerald Shinji Yokoyama 《Journal of lipid research》2010,51(9):2591-2599
We previously reported that the endogenous ATP-binding cassette transporter (ABC)A7 strongly associates with phagocytic function rather than biogenesis of high-density lipoprotein (HDL), being regulated by sterol-regulatory element binding protein (SREBP)2. Phagocytic activity was found enhanced by apolipoprotein (apo)A-I and apoA-II more than twice the maximum in J774 and mouse peritoneal macrophages. Therefore we investigated the molecular basis of this reaction in association with the function of ABCA7. Similar to ABCA1, ABCA7 was degraded, likely by calpain, and apoA-I and apoA-II stabilize ABCA7 against degradation. Cell surface biotinylation experiments demonstrated that endogenous ABCA7 predominantly resides on the cell surface and that the apolipoproteins increase the surface ABCA7. The increase of phagocytosis by apolipoproteins was retained in the J774 cells treated with ABCA1 siRNA and in the peritoneal macrophages from ABCA1-knockout mice, but it was abolished in the J774 cells treated with ABCA7 siRNA and in the peritoneal macrophages from ABCA7-knockout mice. Phagocytosis was decreased in the cells in the peritoneal cavity of the ABCA7-knockout mouse compared with the wild-type control. We thus concluded that extracellular helical apolipoproteins augment ABCA7-associated phagocytosis by stabilizing ABCA7. The results demonstrated direct enhancement of the host defense system by HDL components. 相似文献
15.
《Organogenesis》2013,9(2):41-48
Transplantation therapy for diabetes is limited by unavailability of donor organs and outcomes complicated by immunosuppressive drug toxicity. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce transplant immunogenicity. Insulin-producing cells originating from embryonic pig pancreas obtained very early following pancreatic primordium formation [embryonic day 28 (E28)] engraft long-term in inbred diabetic Lewis or Zucker Diabetic Fatty (ZDF) rats or rhesus macaques. Endocrine cells originating from embryonic pig pancreas transplanted in host mesentery migrate to mesenteric lymph nodes, engraft, normalize glucose tolerance in rats and improve glucose tolerance in rhesus macaques without the need for immune suppression. Engraftment of primordia is permissive for engraftment of an insulin-expressing cell component from porcine islets implanted subsequently without immune suppression. Similarities between findings in inbred rat and non-human primate hosts bode well for successful translation to humans of what could be a novel xenotransplantation strategy for the treatment of diabetes. 相似文献
16.
Hammerman MR 《Organogenesis》2012,8(2):41-48
Transplantation therapy for diabetes is limited by unavailability of donor organs and outcomes complicated by immunosuppressive drug toxicity. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce transplant immunogenicity. Insulin-producing cells originating from embryonic pig pancreas obtained very early following pancreatic primordium formation [embryonic day 28 (E28)] engraft long-term in inbred diabetic Lewis or Zucker Diabetic Fatty (ZDF) rats or rhesus macaques. Endocrine cells originating from embryonic pig pancreas transplanted in host mesentery migrate to mesenteric lymph nodes, engraft, normalize glucose tolerance in rats and improve glucose tolerance in rhesus macaques without the need for immune suppression. Engraftment of primordia is permissive for engraftment of an insulin-expressing cell component from porcine islets implanted subsequently without immune suppression. Similarities between findings in inbred rat and non-human primate hosts bode well for successful translation to humans of what could be a novel xenotransplantation strategy for the treatment of diabetes. 相似文献
17.
The multidrug resistance P-glycoprotein (P-gp) was recently proposed to redistribute cholesterol in the plasma membrane, suggesting that P-gp could modulate cholesterol efflux to cholesterol acceptors. To address this hypothesis and to reevaluate the role of P-gp in cholesterol homeostasis, we first analyzed the role of P-gp expression on cholesterol efflux in P-gp stably transfected drug-selected LLC-MDR1 cells. Cholesterol efflux to methyl-beta-cyclodextrin (CD) was 4-fold higher in LLC-MDR1 cells compared with control LLC-PK1 cells, indicating that the accessible pool of plasma membrane cholesterol was increased by P-gp expression. However, using the P-gp-inducible cells lines HeLa MDR-Tet and 77.1 MDR-Tet, cholesterol efflux to CD, apolipoprotein A-I, or HDL was not associated with P-gp expression. In addition, we did not observe any effect of P-gp expression on cellular free and esterified cholesterol content, cholesteryl ester uptake from LDL and HDL particles, or acyl-CoA:cholesterol acyltransferase activity. Therefore, we conclude that P-gp expression does not play a major role in cholesterol homeostasis in P-gp-inducible cells and that the effects of P-gp on cholesterol homeostasis previously described in drug-selected cells might result from non-P-gp pathways that were also induced by selection for drug resistance. 相似文献
18.
19.
胆固醇流出在维持细胞正常结构和功能中发挥着关键的生理作用,然而其在调节血管新生中的作用一直未明. 近日,美国加州大学医学院的研究人员发现(Nature, 2013,498:118-122), 载脂蛋白A-I结合蛋白(apoA-I binding protein,AIBP)介导的内皮细胞胆固醇流出在调节血管新生中起着关键的作用. 研究者在小鼠离体主动脉和斑马鱼的血管新生实验中发现,AIBP和高密度脂蛋白(high density lipoprotein, HDL)协同调控胆固醇流出,抑制血管内皮生长因子(vascular endothelial growth factor,VEGF)刺激的血管新生. 相似文献
20.
Atshaves BP McIntosh AL Payne HR Gallegos AM Landrock K Maeda N Kier AB Schroeder F 《Journal of lipid research》2007,48(10):2193-2211
Although reverse cholesterol transport from peripheral cell types is mediated through plasma membrane microdomains termed lipid rafts, almost nothing is known regarding the existence, protein/lipid composition, or structure of these putative domains in liver hepatocytes, cells responsible for the net removal of cholesterol from the body. Lipid rafts purified from hepatocyte plasma membranes by a nondetergent affinity chromatography method were: i) present at 33 +/- 3% of total plasma membrane protein; ii) enriched in key proteins of the reverse cholesterol pathway [scavenger receptor class B type I (SR-B1), ABCA1, P-glycoprotein (P-gp), sterol carrier protein-2 (SCP-2)]; iii) devoid of caveolin-1; iv) enriched in cholesterol, sphingomyelin, GM1, and phospholipids low in polyunsaturated fatty acid and double bond index; and v) exhibited an intermediate liquid-ordered lipid phase with significant transbilayer fluidity gradient. Ablation of the gene encoding SCP-2 significantly altered lipid rafts to: i) increase the proportion of lipid rafts present, thereby increasing raft total content of ABCA1, P-gp, and SR-B1; ii) increase total phospholipids while decreasing GM1 in lipid rafts; iii) decrease the fluidity of lipid rafts, consistent with the increased intermediate liquid-ordered phase; and iv) abolish the lipid raft transbilayer fluidity gradient. Thus, despite the absence of caveolin-1 in liver hepatocytes, lipid rafts represented nearly one-third of the mouse hepatocyte plasma membrane proteins and displayed unique protein, lipid, and biophysical properties that were differentially regulated by SCP-2 expression. 相似文献