首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution of vertebrate endemics in oceanic islands follows a predictable pattern, known as the island rule, according to which gigantism arises in originally small-sized species and dwarfism in large ones. Species of extinct insular giant rodents are known from all over the world. In the Canary Islands, two examples of giant rats, †Canariomys bravoi and †Canariomys tamarani, endemic to Tenerife and Gran Canaria, respectively, disappeared soon after human settlement. The highly derived morphological features of these insular endemic rodents hamper the reconstruction of their evolutionary histories. We have retrieved partial nuclear and mitochondrial data from †C. bravoi and used this information to explore its evolutionary affinities. The resulting dated phylogeny confidently places †C. bravoi within the African grass rat clade (Arvicanthis niloticus). The estimated divergence time, 650 000 years ago (95% higher posterior densities: 373 000–944 000), points toward an island colonization during the Günz–Mindel interglacial stage. †Canariomys bravoi ancestors would have reached the island via passive rafting and then underwent a yearly increase of mean body mass calculated between 0.0015 g and 0.0023 g; this corresponds to fast evolutionary rates (in darwins (d), ranging from 7.09 d to 2.78 d) that are well above those observed for non-insular mammals.  相似文献   

2.
Members of the mammalian families Elephantidae and Hippopotamidae (extant and extinct elephants and hippos) include extinct dwarf species that display up to 98% decrease in body size compared to probable ancestral sources. In addition to differences in body mass, skulls of these species consistently display distinctive morphological changes, including major reduction of pneumatised areas in dwarf elephants and shortened muzzles in dwarf hippos. Here we build on previous studies of island dwarf species by conducting a geometric morphometric analysis of skull morphology and allometry in target taxa, living and extinct, and elaborate on the relation between skull size and body size. Our analysis indicates that skull size and body size within terrestrial placental mammals scale almost isometrically (PGLS major axis slope 0.906). Furthermore, skull shape in dwarf species differed from both their ancestors and the juveniles of extant species. In insular dwarf hippos, the skull was subject to considerable anatomical reorganisation in response to distinct selection pressures affecting early ontogeny (the “island syndrome”). By contrast, skull shape in adult insular dwarf elephants can be explained well by allometric effects; selection on size may thus have been the main driver of skull shape in dwarf elephants. We suggest that a tightly constrained growth trajectory, without major anatomical reorganization of the skull, allowed for flexible adaptations to changing environments and was one of the factors underlying the evolutionary success of insular dwarf elephants.  相似文献   

3.

Background

Speckled rattlesnakes (Crotalus mitchellii) inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size) evolving in response to shifts in prey size.

Methodology/Principal Findings

Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Ángel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC) showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively.

Conclusions/Significance

Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics that are related to graded differences in area over what are otherwise similar bioclimatic conditions. We hypothesize that in this system shifts to larger prey, episodic saturation and depression of primary prey density, and predator release may have led to insular gigantism, and that shifts to smaller prey and increased reproductive efficiency in the presence of intense intraspecific competition may have led to insular dwarfism.  相似文献   

4.
The unique set of morphological characteristics of the Liang Bua hominins (Homo floresiensis) has been attributed to explanations as diverse as insular dwarfism and pathological microcephaly. This study examined the relationship between cranial size and shape across a range of hominin and African ape species to test whether or not cranial morphology of LB1 is consistent with the basic pattern of static allometry present in these various taxa. Correlations between size and 3D cranial shape were explored using principal components analysis in shape space and in Procrustes form space. Additionally, patterns of static allometry within both modern humans and Plio-Pleistocene hominins were used to simulate the expected cranial shapes of each group at the size of LB1. These hypothetical specimens were compared to LB1 both visually and statistically. Results of most analyses indicated that LB1 best fits predictions for a small specimen of fossil Homo but not for a small modern human. This was especially true for analyses of neurocranial landmarks. Results from the whole cranium were less clear about the specific affinities of LB1, but, importantly, demonstrated that aspects of facial morphology associated with smaller size converge on modern human morphology. This suggests that facial similarities between LB1 and anatomically modern humans may not be indicative of a close relationship. Landmark data collected from this study were also used to test the degree of cranial asymmetry in LB1. These comparisons indicated that the cranium is fairly asymmetrical, but within the range of asymmetry exhibited by modern humans and all extant African ape species. Compared to other fossil specimens, the degree of asymmetry in LB1 is moderate and readily explained by the taphonomic processes to which all fossils are subject. Taken together, these findings suggest that H. floresiensis was most likely the diminutive descendant of a species of archaic Homo, although the details of this evolutionary history remain obscure.  相似文献   

5.
The tendency for island populations of mammalian taxa to diverge in body size from their mainland counterparts consistently in particular directions is both impressive for its regularity and, especially among rodents, troublesome for its exceptions. However, previous studies have largely ignored mainland body size variation, treating size differences of any magnitude as equally noteworthy. Here, we use distributions of mainland population body sizes to identify island populations as ‘extremely’ big or small, and we compare traits of extreme populations and their islands with those of island populations more typical in body size. We find that although insular rodents vary in the directions of body size change, ‘extreme’ populations tend towards gigantism. With classification tree methods, we develop a predictive model, which points to resource limitations as major drivers in the few cases of insular dwarfism. Highly successful in classifying our dataset, our model also successfully predicts change in untested cases.  相似文献   

6.
Aim Island taxa often attain forms outside the range achieved by mainland relatives. Body size evolution of vertebrates on islands has therefore received much attention, with two seemingly conflicting patterns thought to prevail: (1) islands harbour animals of extreme size, and (2) islands promote evolution towards medium body size (‘the island rule’). We test both hypotheses using body size distributions of mammal, lizard and bird species. Location World‐wide. Methods We assembled body size and insularity datasets for the world’s lizards, birds and mammals. We compared the frequencies with which the largest or smallest member of a group is insular with the frequencies expected if insularity is randomly assigned within groups. We tested whether size extremes on islands considered across mammalian phylogeny depart from a null expectation under a Brownian motion model. We tested the island rule by comparing insular and mainland members of (1) a taxonomic level and (2) mammalian sister species, to determine if large insular animals tend to evolve smaller body sizes while small ones evolve larger sizes. Results The smallest species in a taxon (order, family or genus) are insular no more often than would be expected by chance in all groups. The largest species within lizard families and bird genera (but no other taxonomic levels) are insular more often than expected. The incidence of extreme sizes in insular mammals never departs from the null, except among extant genera, where gigantism is marginally less common than expected under a Brownian motion null. Mammals follow the island rule at the genus level and when comparing sister species and clades. This appears to be driven mainly by insular dwarfing in large‐bodied lineages. A similar pattern in birds is apparent for species within orders. However, lizards follow the converse pattern. Main conclusions The popular misconception that islands have more than their fair share of size extremes may stem from a greater tendency to notice gigantism and dwarfism when they occur on islands. There is compelling evidence for insular dwarfing in large mammals, but not in other taxa, and little evidence for the second component of the island rule – gigantism in small‐bodied taxa.  相似文献   

7.
Morphometric methods allow the quantification of directions of phenotypic changes and their statistical comparison in a morphometric space. We applied this approach to investigate several candidate factors to explain changes in mandible shape occurring in house mice (Mus musculus domesticus, Mammalia, Rodentia) in Corsica and a nearby islet. The role of niche widening and of the concomitant change in diet was evaluated by comparing the micro‐evolutionary insular change to the macro‐evolutionary difference between omnivorous and herbivorous rodents. Phenotypic plasticity, which may contribute to rapid insular evolution, was assessed by breeding laboratory mice on hard versus soft food. The related change in mandible shape was compared with differences between continental and insular populations. The role of allometry was evaluated by assessing shape change related to size within the continental population and comparing this direction of change with differences on islands. Finally, evolution may be facilitated along the direction of the greatest phenotypic variance. This hypothesis was tested by computing in wild populations vectors corresponding to this direction and by comparing these vectors with those corresponding to estimates of shape changes related to plasticity, micro‐ and macro‐evolutionary processes. In Corsica, the congruence in directions of macro‐ and micro‐evolutionary phenotypic vectors (Corsican/continental mice versus omnivorous/herbivorous rodents) supports the hypothesis of adaptation in mandible shape evolution. By contrast, on the islet, phenotypic divergence follows directions of plastic response to food consistency as well as within‐population allometry. Thus, results suggest differences in the relative importance of processes which may influence rodent mandibular shape depending on the size of the islands they colonized. Faster evolution and plasticity may be more evident in small and often ephemeral populations living on small islands, whereas micro‐evolutionary processes may have enough time and genetic variability to progressively ‘align’ with macro‐evolutionary trends in large populations from big islands.  相似文献   

8.
As stated by the island rule, small mammals evolve toward gigantism on islands. In addition they are known to evolve faster than their mainland counterparts. Body size in island mammals may also be influenced by geographical climatic gradients or climatic change through time. We tested the relative effects of climate change and isolation on the size of the Japanese rodent Apodemus speciosus and calculated evolutionary rates of body size change since the last glacial maximum (LGM). Currently A. speciosus populations conform both to Bergmann's rule, with an increase in body size with latitude, and to the island rule, with larger body sizes on small islands. We also found that fossil representatives of A. speciosus are larger than their extant relatives. Our estimated evolutionary rates since the LGM show that body size evolution on the smaller islands has been less than half as rapid as on Honshu, the mainland-type large island of Japan. We conclude that island populations exhibit larger body sizes today not because they have evolved toward gigantism, but because their evolution toward a smaller size, due to climate warming since the LGM, has been decelerated by the island effect. These combined results suggest that evolution in Quaternary island small mammals may not have been as fast as expected by the island effect because of the counteracting effect of climate change during this period.  相似文献   

9.
Species that are endemic to isolated islands often differ dramatically in size from their mainland relatives, for reasons that are poorly understood. While decades of research have sought to better understand insular size changes in animals, far fewer studies have investigated insular size changes in plants. Here, I test for changes in plant stature, seed size and leaf area in a woody shrub (Alyxia ruscifolia, Apocynaceae), which inhabits both the continent of Australia, and Lord Howe Island, a subtropical island located 600 km off Australia's east coast. Results showed that island plants became reproductively mature at earlier stages of ontogeny than mainland plants, and that mature plants were taller on the mainland, providing a rare example of dwarfism in plants. Conversely, island plants produced larger seeds, which might make them more competitive as seedlings. Seeds produced by island plants were also less circular and more oblong in shape than their mainland counterparts, perhaps to facilitate their dispersal by avian frugivores with limited gape sizes. Lastly, island and mainland plants had similar average leaf sizes. However, juvenile plants on the mainland produced smaller, more needle‐shaped leaves with larger terminal spines relative to adult plants, which may help protect them against large, ground‐dwelling herbivores. On the other hand, island plants showed weaker ontogenetic shifts in leaf morphology in the absence of large herbivores. When interpreted jointly, results indicate that stature, seed size and leaf area are on separate evolutionary trajectories in A. ruscifolia, which appear to be determined by a complex suite of disparate selection pressures between Lord Howe Island and the mainland.  相似文献   

10.
We investigated the role of geographical insularity in divergence and speciation of Procolobus kirkii by examining cranial morphology. The sample (n = 369) included museum specimens of Procolobus spp. and recently deceased individuals of P. kirkii from the main island of Zanzibar and 2 smaller islands in the archipelago. Geometric morphometrics evinced pronounced divergence of Procolobus kirkii from mainland Procolobus, including members of P. badius ssp., P. pennantii ssp., P. rufomitratus, P. gordonorum and also representatives of the assemblage of red colobus populations from Central Equatorial Africa. Procolobus kirkii has a small cranium, consistent with the island rule for large mammals, reduced sexual dimorphism consistent with Rensch’s rule, and a distinct cranial form. Analyses of phenotypic variance of Procolobus kirkii gave no evidence for population bottlenecks in the history of the species, but there is a clear indication that the species has experienced accelerated morphological evolution of size, probably as a result of insularity. Their highly distinctive morphology lends weight to the argument that they are a unique insular endemic species in need of active conservation. An erratum to this article can be found at  相似文献   

11.
Although hylobatids are the most speciose of the living apes, their morphological interspecies and intraspecies variation remains poorly understood. Here, we assess mandibular shape variation in two species of Hylobates, white-handed (Hylobates lar) and black-handed (Hylobates agilis) gibbons. Using 71 three-dimensional landmarks to quantify mandibular shape, interspecies and intraspecies variation and geographic patterns of mandibular shape are examined in a mixed sex sample of adult H. lar and H. agilis through generalized Procrustes analysis, Procrustes analysis of variance, and principal components analysis. We find that relative to H. agilis, H. lar exhibits a higher amount of variation in mandibular shape. Both species demonstrate similar allometric patterns in mandibular shape. We also highlight a geographic pattern in mandibular shape variation. Compared to mainland hylobatids, insular hylobatids have relatively lower, more posteriorly oriented, and anteroposteriorly wider mandibular condyles, with an increased distance between the condyles and the coronoid processes. This geographic pattern could reflect differences in functional demands on the mandible during mastication and/or could be driven by factors often associated with evolutionary pressures of island populations relative to mainland populations. The findings of this study highlight how little is known about Hylobates morphological variation and how important this is for using Hylobates to help interpret the primate fossil record. Understanding interspecific and intraspecific variation in extant primates is vital to interpreting variation in the primate fossil record.  相似文献   

12.
Geographic and environmental isolations of islands and the mainland offer excellent opportunity to investigate colonization and survival dynamics of island populations. We inferred and compared evolutionary processes and the demographic history of Rhododendron tsusiophyllum, in the Izu Islands and the much larger island Honshu, treated here as the mainland, using thousands of nuclear SNPs obtained by ddRAD-seq from eight populations of R. tsusiophyllum and three populations of R. tschonoskii as an outgroup. Phylogenetic relationships and their habitats suggest that R. tsusiophyllum had evolved and migrated from cold north to warm south regions. We detected clear genetic divergence among populations in three regions of Honshu and the Izu Islands, suggesting restricted migration between them due to isolated habitats on mountains even in the mainland. The three regions have different changes in effective population size, especially, genetic diversity and population size of the Izu Islands are small compared to the others. Further, habitats of populations in the Izu Islands are warmer than those in Honshu, suggesting that they have undergone adaptive evolution. Our study provides evidences of montane rather than insular isolation on genetic divergence, survival of populations and significance of adaptive evolution for island populations with small population size and low genetic diversity, despite close proximity to mainland populations.Subject terms: Genetic variation, Plant evolution, Conservation biology  相似文献   

13.
Aim The distinct nature of island populations has traditionally been attributed either to adaptation to particular insular conditions or to random genetic effects. In order to assess the relative importance of these two disparate processes, insular effects were addressed in the European wood mouse, Apodemus sylvaticus (Linnaeus, 1758). Location Wood mice from 33 localities on both mainland and various Atlantic and western Mediterranean islands were considered. This sampling covers only part of the latitudinal range of A. sylvaticus but included the two main genetic clades identified by previous studies. Islands encompass a range of geographical conditions (e.g. small islands fringing the continent through large and isolated ones). Methods The insular syndrome primarily invokes variations in body size, but ecological factors such as release from competition, niche widening and food availability should also influence other characters related to diet. In the present study, the morphology of the wood mice was quantified based on two characters involved in feeding: the size and shape of the mandibles and first upper molars. The size of the mandible is also a proxy for the body size of the animal. Patterns of morphological differentiation of both features were estimated using two‐dimensional outline analysis based on Fourier methods. Results Significant differences between mainland and island populations were observed in most cases for both the mandibles and molars. However, molars and mandibles displayed divergent patterns. Mandible shape diverged mostly on islands of intermediate remoteness and competition levels, whereas molars exhibited the greatest shape differentiation on small islands, such as Port‐Cros and Porquerolles. A mosaic pattern was also displayed for size. Body and mandible size increased on Ibiza, but molar size remained similar to mainland populations. Mosaic patterns were, however, not apparent in the mainland populations. Congruent latitudinal variations were evident for the size and shape of both mandibles and molars. Main conclusions Mosaic evolution appears to characterize insular divergence. The molar seems to be more prone to change with reduced population size on small islands, whereas the mandible could be more sensitive to peculiar environmental conditions on large and remote islands.  相似文献   

14.
Populations on islands often exhibit lower levels of genetic variation and ecomorphological divergence compared to their mainland relatives. While phenotypic differentiation in characters, such as size or shape among insular organisms, has been well studied, insular differentiation in quantitative reproductive traits involved in chemical communication has received very little attention to date. Here, we investigated the impact of insularity on two syntopic bumblebee species pairs: one including species that are phylogenetically related (Bombus terrestris and B. lucorum), and the other including species that interact ecologically (B. terrestris and its specific nest inquiline B. vestalis). For each bumblebee species, we characterized the patterns of variation and differentiation of insular (Corsican) vs. mainland (European) populations (i) with four genes (nuclear and mitochondrial, 3781 bp) and (ii) in the chemical composition of male marking secretions (MMS), a key trait for mate attraction in bumblebees, by gas chromatography-mass spectrometry (GC-MS). Our results provide evidence for genetic differentiation in Corsican bumblebees and show that, contrary to theoretical expectations, island populations of bumblebees exhibit levels of genetic variation similar to the mainland populations. Likewise, our comparative chemical analyses of MMS indicate that Corsican populations of bumblebees are significantly differentiated from the mainland yet they hold comparative levels of within-population MMS variability compared to the mainland. Therefore, insularity has led Corsican populations to diverge both genetically and chemically from their mainland relatives, presumably through genetic drift, but without a decrease of genetic diversity in island populations. We hypothesize that MMS divergence in Corsican bumblebees was driven by a persistent lack of gene flow with mainland populations and reinforced by the preference of Corsican females for sympatric (Corsican) MMS. The impoverished Corsican bumblebee fauna has not led to relaxation of stabilizing selection on MMS but to consistent differentiation chemical reproductive traits on the island.  相似文献   

15.
It is a well-known phenomenon that islands can support populations of gigantic or dwarf forms of mainland conspecifics, but the variety of explanatory hypotheses for this phenomenon have been difficult to disentangle. The highly venomous Australian tiger snakes (genus Notechis) represent a well-known and extreme example of insular body size variation. They are of special interest because there are multiple populations of dwarfs and giants and the age of the islands and thus the age of the tiger snake populations are known from detailed sea level studies. Most are 5000-7000 years old and all are less than 10,000 years old. Here we discriminate between two competing hypotheses with a molecular phylogeography dataset comprising approximately 4800 bp of mtDNA and demonstrate that populations of island dwarfs and giants have evolved five times independently. In each case the closest relatives of the giant or dwarf populations are mainland tiger snakes, and in four of the five cases, the closest relatives are also the most geographically proximate mainland tiger snakes. Moreover, these body size shifts have evolved extremely rapidly and this is reflected in the genetic divergence between island body size variants and mainland snakes. Within south eastern Australia, where populations of island giants, populations of island dwarfs, and mainland tiger snakes all occur, the maximum genetic divergence is only 0.38%. Dwarf tiger snakes are restricted to prey items that are much smaller than the prey items of mainland tiger snakes and giant tiger snakes are restricted to seasonally available prey items that are up three times larger than the prey items of mainland tiger snakes. We support the hypotheses that these body size shifts are due to strong selection imposed by the size of available prey items, rather than shared evolutionary history, and our results are consistent with the notion that adaptive plasticity also has played an important role in body size shifts. We suggest that plasticity displayed early on in the occupation of these new islands provided the flexibility necessary as the island's available prey items became more depauperate, but once the size range of available prey items was reduced, strong natural selection followed by genetic assimilation worked to optimize snake body size. The rate of body size divergence in haldanes is similar for dwarfs (h(g) = 0.0010) and giants (h(g) = 0.0020-0.0025) and is in line with other studies of rapid evolution. Our data provide strong evidence for rapid and repeated morphological divergence in the wild due to similar selective pressures acting in different directions.  相似文献   

16.
A cascade of morphological, ecological, demographical and behavioural changes operates within island communities compared to mainland. We tested whether metabolic rates change on islands. Using a closed circuit respirometer, we investigated resting metabolic rate (RMR) of three species of Crocidurinae shrews: Suncus etruscus, Crocidura russula, and C. suaveolens. For the latter, we compared energy expenditure of mainland and island populations. Our measurements agree with those previously reported for others Crocidurinae: the interspecific comparison (ANCOVA) demonstrated an allometric relation between energy requirements and body mass. Energy expenditure also scaled with temperature. Island populations (Corsica and Porquerolles) of C. suaveolens differed in size from mainland (gigantism). A GLM showed a significant relationship between energy expenditure, temperature, body mass and locality. Mass specific RMR allometrically scales body mass, but total RMR does not significantly differ between mainland and island, although island shrews are giant. Our results are consistent with other studies: that demonstrated that the evolution of mammalian metabolism on islands is partially independent of body mass. In relation to the insular syndrome, we discuss how island selective forces (changes in resource availability, decrease in competition and predation pressures) can operate in size and physiological adjustments.  相似文献   

17.
Aim To investigate evolutionary changes in the size of leaves, stems and seeds of plants inhabiting isolated islands surrounding New Zealand. Location Antipodes, Auckland, Campbell, Chatham, Kermadec, Three Kings and Poor Knights Islands. Methods First, we compared the size of leaves and stems produced by 14 pairs of plant taxa between offshore islands and the New Zealand mainland, which were grown in a common garden to control for environmental effects. Similar comparisons of seed sizes were made between eight additional pairs of taxa. Second, we used herbarium specimens from 13 species pairs to investigate scaling relationships between leaf and stem sizes in an attempt to pinpoint which trait might be under selection. Third, we used herbarium specimens from 20 species to test whether changes in leaf size vary among islands located at different latitudes. Lastly, we compiled published records of plant heights to test whether insular species in the genus Hebe differed in size from their respective subgenera on the mainland. Results Although some evidence of dwarfism was observed, most insular taxa were larger than their mainland relatives. Leaf sizes scaled positively with stem diameters, with island taxa consistently producing larger leaves for any given stem size than mainland species. Leaf sizes also increased similarly among islands located at different latitudes. Size changes in insular Hebe species were unrelated to the average size of the respective subgenera on the mainland. Main conclusions Consistent evidence of gigantism was observed, suggesting that plants do not obey the island rule. Because our analyses were restricted to woody plants, results are also inconsistent with the ‘weeds‐to‐trees’ hypothesis. Disproportionate increases in leaf size relative to other plant traits suggest that selection may favour the evolution of larger leaves on islands, perhaps due to release from predation or increased intra‐specific competition.  相似文献   

18.
Size evolution in island lizards   总被引:2,自引:0,他引:2  
Aim  The island rule, small animal gigantism and large animal dwarfism on islands, is a topic of much recent debate. While size evolution of insular lizards has been widely studied, whether or not they follow the island rule has never been investigated. I examined whether lizards show patterns consistent with the island rule.
Location  Islands worldwide.
Methods  I used literature data on the sizes of island–mainland population pairs in 59 species of lizards, spanning the entire size range of the group, and tested whether small insular lizards are larger than their mainland conspecifics and large insular lizards are smaller. I examined the influence of island area, island isolation, and dietary preferences on lizard size evolution.
Results  Using mean snout–vent length as an index of body size, I found that small lizards on islands become smaller than their mainland conspecifics, while large ones become larger still, opposite to predictions of the island rule. This was especially strong in carnivorous lizards; omnivorous and herbivorous species showed a pattern consistent with the island rule but this result was not statistically significant. No trends consistent with the island rule were found when maximum snout–vent length was used. Island area had, at best, a weak effect on body size. Using maximum snout–vent length as an index of body size resulted in most lizard populations appearing to be dwarfed on islands, but no such pattern was revealed when mean snout–vent length was used as a size index.
Main conclusions  I suggest that lizard body size is mostly influenced by resource availability, with large size allowing some lizard populations to exploit resources that are unavailable on the mainland. Lizards do not follow the island rule. Maximum snout–vent length may be biased by sampling effort, which should be taken into account when one uses this size index.  相似文献   

19.
Aim We investigated the hypothesis that the insular body size of mammals results from selective forces whose influence varies with characteristics of the focal islands and the focal species, and with interactions among species (ecological displacement and release). Location Islands world‐wide. Methods We assembled data on the geographic characteristics (area, isolation, maximum elevation, latitude) and climate (annual averages and seasonality of temperature and precipitation) of islands, and on the ecological and morphological characteristics of focal species (number of mammalian competitors and predators, diet, body size of mainland reference populations) that were most relevant to our hypothesis (385 insular populations from 98 species of extant, non‐volant mammals across 248 islands). We used regression tree analyses to examine the hypothesized contextual importance of these factors in explaining variation in the insular body size of mammals. Results The results of regression tree analyses were consistent with predictions based on hypotheses of ecological release (more pronounced changes in body size on islands lacking mammalian competitors or predators), immigrant selection (more pronounced gigantism in small species inhabiting more isolated islands), thermoregulation and endurance during periods of climatic or environmental stress (more pronounced gigantism of small mammals on islands of higher latitudes or on those with colder and more seasonal climates), and resource subsidies (larger body size for mammals that utilize aquatic prey). The results, however, were not consistent with a prediction based on resource limitation and island area; that is, the insular body size of large mammals was not positively correlated with island area. Main conclusions These results support the hypothesis that the body size evolution of insular mammals is influenced by a combination of selective forces whose relative importance and nature of influence are contextual. While there may exist a theoretical optimal body size for mammals in general, the optimum for a particular insular population varies in a predictable manner with characteristics of the islands and the species, and with interactions among species. This study did, however, produce some unanticipated results that merit further study – patterns associated with Bergmann’s rule are amplified on islands, and the body size of small mammals appears to peak at intermediate and not maximum values of latitude and island isolation.  相似文献   

20.
Marmota vancouverensis is the only insular species among the 14 species of marmots. The evolutionary history of this species is unresolved. Although M. vancouverensis is strongly differentiated in osteological and other morphological characters, its low genetic divergence suggests recent evolution from an ancestral continental species. We used geometric morphometric techniques to assess the morphology of hemimandibles from 239 modern M. vancouverensis , Marmota caligata , Marmota flaviventris , Marmota olympus and 30 Holocene (9435–735 cal. yr bp) subfossil M. vancouverensis . Our results confirm that the mandible of M. vancouverensis is strongly differentiated in shape from continental marmot species, but similar in size to its mainland sister species M. caligata . Temporal variation in size and shape over the past 2500 years among allochronic samples of M. vancouverensis was minimal suggesting that the morphological divergence of this species occurred in a period of rapid change following its isolation from mainland populations in the late Pleistocene. Selection pressures associated with environmental changes and founder effects and genetic drift resulting from population bottlenecks created by population declines and habitat fragmentation are hypothesized as factors contributing to the morphological divergence of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号