首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
The DRB region of the major histocompatibility complex (MHC) of cynomolgus and rhesus macaques is highly plastic, and extensive copy number variation together with allelic polymorphism makes it a challenging enterprise to design a typing protocol. All intact DRB genes in cynomolgus monkeys (Mafa) appear to possess a compound microsatellite, DRB-STR, in intron 2, which displays extensive length polymorphism. Therefore, this STR was studied in a large panel of animals, comprising pedigreed families as well. Sequencing analysis resulted in the detection of 60 Mafa-DRB exon 2 sequences that were unambiguously linked to the corresponding microsatellite. Its length is often allele specific and follows Mendelian segregation. In cynomolgus and rhesus macaques, the nucleotide composition of the DRB-STR is in concordance with the phylogeny of exon 2 sequences. As in humans and rhesus monkeys, this protocol detects specific combinations of different DRB-STR lengths that are unique for each haplotype. In the present panel, 22 Mafa-DRB region configurations could be defined, which exceeds the number detected in a comparable cohort of Indian rhesus macaques. The results suggest that, in cynomolgus monkeys, even more frequently than in rhesus macaques, new haplotypes are generated by recombination-like events. Although both macaque species are known to share several identical DRB exon 2 sequences, the lengths of the corresponding microsatellites often differ. Thus, this method allows not only fast and accurate DRB haplotyping but may also permit discrimination between highly related macaque species.  相似文献   

2.
3.
Cynomolgus macaques have been used widely to build a research model of infectious and chronic diseases, as well as in transplantation studies, where disease susceptibility and/or resistance are associated with the major histocompatibility complex (MHC). To better elucidate polymorphisms and genetic differences in the Mafa‐DRB locus, and facilitate the experimental use of cynomolgus macaques, we used pool screening combined with cloning and direct sequencing of polymerase chain reaction products to characterize MhcMafa‐DRB gene alleles in 153 Vietnamese cynomolgus macaques. We identified 30 Mafa‐DRB alleles belonging to 17 allelic lineages, including four novel sequences that had not been documented in earlier reports. The highest frequency allele was Mafa‐DRB*W27:04, which was present in 7 of 35 (20%) monkeys. The next most frequent alleles were Mafa‐DRB*3:07 and Mafa‐DRB*W7:01, which were detected in 5 of 35 (14.3%) and 4 of 35 (11.4%) of the monkeys, respectively. The high‐frequency alleles in this Vietnamese population may be high priority targets for additional characterization of immune functions. Only the DRB1*03 and DRB1*10 lineages were also present in humans, whereas the remaining alleles were monkey‐specific lineages. We found 25 variable sites by aligning the deduced amino acid sequences of 29 identified alleles. Evolutionary and population analyses based on these sequences showed that human, rhesus, and cynomolgus macaques share several Mhc‐DRB lineages and the shared polymorphisms in the DRB region may be attributable to the existence of interbreeding between rhesus and cynomolgus macaques. This information will promote the understanding of MHC diversity and polymorphism in cynomolgus macaques and increase the value of this species as a model for biomedical research. Am. J. Primatol. 74:958‐966, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
MHC class I A region diversity and polymorphism in macaque species   总被引:11,自引:7,他引:4  
The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing.  相似文献   

6.
The rhesus macaque is an important model in preclinical transplantation research and for the study of chronic and infectious diseases, and so extensive knowledge of its MHC (MhcMamu) is needed. Nucleotide sequencing of exon 2 allowed the detection of 68 Mamu-DRB alleles. Although most alleles belong to loci/lineages that have human equivalents, identical Mhc-DRB alleles are not shared between humans and rhesus macaques. The number of -DRB genes present per haplotype can vary from two to seven in the rhesus macaque, whereas it ranges from one to four in humans. Within a panel of 210 rhesus macaques, 24 Mamu-DRB region configurations can be distinguished differing in the number and composition of loci. None of the Mamu-DRB region configurations has been described for any other species, and only one of them displays major allelic variation giving rise to a total of 33 Mamu-DRB haplotypes. In the human population, only five HLA-DRB region configurations were defined, which in contrast to the rhesus macaque exhibit extensive allelic polymorphism. In comparison with humans, the unprecedented polymorphism of the Mamu-DRB region configurations may reflect an alternative strategy of this primate species to cope with pathogens. Because of the Mamu-DRB diversity, nonhuman primate colonies used for immunological research should be thoroughly typed to facilitate proper interpretation of results. This approach will minimize as well the number of animals necessary to conduct experiments.  相似文献   

7.
Microsatellite typing of the rhesus macaque MHC region   总被引:16,自引:8,他引:8  
To improve the results gained by serotyping rhesus macaque major histocompatibility complex (MHC) antigens, molecular typing techniques have been established for class I and II genes. Like the rhesus macaque Mamu-DRB loci, the Mamu-A and -B are not only polymorphic but also polygenic. As a consequence, sequence-based typing of these genes is time-consuming. Therefore, eight MHC-linked microsatellites, or short tandem repeats (STRs), were evaluated for their use in haplotype characterization. Polymorphism analyses in rhesus macaques of Indian and Chinese origin showed high STR allelic diversity in both populations but different patterns of allele frequency distribution between the groups. Pedigree data for class I and II loci and the eight STRs allowed us to determine extended MHC haplotypes in rhesus macaque breeding groups. STR sequencing and comparisons with the complete rhesus macaque MHC genomic map allowed the exact positioning of the markers. Strong linkage disequilibria were observed between Mamu-DR and -DQ loci and adjacent STRs. Microsatellite typing provides an efficient, robust, and quick method of genotyping and deriving MHC haplotypes for rhesus macaques regardless of their geographical origin. The incorporation of MHC-linked STRs into routine genetic tests will contribute to efforts to improve the genetic characterization of the rhesus macaque for biomedical research and can provide comparative information about the evolution of the MHC region.  相似文献   

8.
A thoroughly characterized breeding colony of 172 pedigreed rhesus macaques was used to analyze exon 2 of the polymorphic Mamu-DPB1, -DQA1, -DQB1, and -DRB loci. Most of the monkeys or their ancestors originated in India, though the panel also included animals from Burma and China, as well as some of unknown origin and mixed breeds. In these animals, mtDNA appears to correlate with the aforementioned geographic origin, and a large number of Mamu class II alleles were observed. The different Mamu-DPB1 alleles were largely shared between monkeys of different origin, whereas in humans particular alleles appear to be unique for ethnic populations. In contrast to Mamu-DPB1, the highly polymorphic -DQA1/DQB1 alleles form tightly linked pairs that appear to be about two-thirds population specific. For most of the DQA1/DQB1 pairs, Mamu-DRB region configurations present on the same chromosome have been ascertained, resulting in 41 different -DQ/DRB haplotypes. These distinct DQ/DRB haplotypes seem to be specific for monkeys of a determined origin. Thus, in evolutionary terms, the Mamu-DP, -DQ, and -DR regions show increasing instability with regard to allelic polymorphism, such as for -DP/DQ, or gene content and allelic polymorphism, such as for -DR, resulting in population-specific class II haplotypes. Furthermore, novel haplotypes are generated by recombination-like events. The results imply that mtDNA analysis in combination with Mhc typing is a helpful tool for selecting animals for biomedical experiments.The sequences reported in this paper have been deposited in the EMBL database (accession nos. AJ534296–AJ534304, AJ 564564, and AJ557455–AJ557511)  相似文献   

9.
 Although white-tailed deer (Odocoileus virginianus) are one of North America's best studied mammals, no information is available concerning allelic diversity at any locus of the major histocompatibility complex in this taxon. Using the polymerase chain reaction, single-stranded conformation polymorphism analysis, and DNA sequencing techniques, 15 DRB exon 2 alleles were identified among 150 white-tailed deer from a single population in southeastern Oklahoma. These alleles represent a single locus and exhibit a high degree of nucleotide and amino acid polymorphism, with most amino acid variation occurring at positions forming the peptide binding sites. Furthermore, twenty-seven amino acid residues unique to white-tailed deer DRB alleles were detected, with 19 of these occurring at residues forming contact points of the peptide binding region. Significantly higher rates of nonsynonymous than synonymous substitutions were detected among these DRB alleles. In contrast to other studies of Artiodactyla DRB sequences, interallelic recombination does not appear to be playing a significant role in the generation of allelic diversity at this locus in white-tailed deer. To examine evolution of white-tailed deer (Odvi-DRB) alleles within Cervidae, we performed a phylogenetic analysis of all published red deer (Ceel-DRB), roe deer (Caca-DRB), and moose (Alal-DRB) DRB alleles. The phylogenetic tree clearly shows a trans-species persistence of DRB lineages among these taxa. Moreover, this phylogenetic tree provides insight into evolution of DRB allelic lineages within Cervidae and may aid in assignment of red deer DRB alleles to specific loci. Received: 25 June 1998 / Revised: 2 September 1998  相似文献   

10.
The TRIM5α restriction factor can protect some species of monkeys, but not humans, from HIV infection. It has also emerged that some monkeys have a cyclophilin A domain retrotransposed into the TRIM5 locus resulting in the expression of a TRIMCyp protein with anti-retroviral activity. A high degree of sequence variation in the primate TRIM5 gene has been reported that varies between populations of rhesus macaques, a widely used non-human primate model of HIV/AIDS, and recently shown to correlate with susceptibility to simian immunodeficiency viruses in this species. Cynomolgus macaques are also used widely in HIV research. A non-indigenous population on Mauritius has highly restricted genetic diversity compared with macaques from Indonesia. The relative allelic diversity of TRIM5α and TRIMCyp within these two sub-populations may impact on the susceptibility of the macaques to simian immunodeficiency virus thereby influencing the outcome of studies using these monkeys. We sought to establish the genetic diversity of these alleles in cynomolgus macaques. We identified seven TRIM5α alleles in Indonesian macaques, three of which are novel, but only three in the Mauritian-origin macaques. Strikingly, 87% of Indonesian, but none of the Mauritian macaques, possessed a retrotransposed Cyp domain. A splice acceptor site single-nucleotide polymorphism that allows formation of a TRIMCyp protein was absent for the TRIM5α alleles found in the Mauritian macaques. The level of allelic diversity reported here is greater than previously proposed for cynomolgus macaque species.  相似文献   

11.
12.
The interaction of killer-cell immunoglobulin-like receptors (KIR) and their respective major histocompatibility complex (MHC) ligands can alter the activation state of the natural killer (NK) cell. In both humans and rhesus macaques, particular types of non-classical MHC class I molecules are predominantly expressed on the trophoblast. In humans, human leukocyte antigen G has been demonstrated to act as a ligand for KIR2DL4, present on all NK cells, whereas Mamu-AG may execute a similar function in rhesus macaques. During primate evolution, orthologues of KIR2DL4 appear to have been highly conserved, suggesting strong purifying selection. A cohort of 112 related and unrelated rhesus macaques of mostly Indian origin were selected to study their KIR2DL4 genes for the occurrence of polymorphism. Comparison of the proximal region provided evidence for strong conservative selection acting on the exons encoding the Ig domains. As is found in humans, in the Indian rhesus macaque population, two different KIR2DL4 entities are encountered, which differ for their intra-cellular signalling motifs. One genotype contains a complex mutation in the distal region of exon 9, which negates a serine/threonine kinase site. Furthermore, both allelic entities are present in a distribution, which suggests that balancing selection is operating on these two distinct forms of KIR2DL4. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
The major histocompatibility complex (MHC) is highly polymorphic in most primate species studied thus far. The rhesus macaque (Macaca mulatta) has been studied extensively and the Mhc-DRB region demonstrates variability similar to humans. The extent of MHC diversity is relatively unknown for other Old World monkeys (OWM), especially among genera other than Macaca. A molecular survey of the Mhc-DRB region in mandrills (Mandrillus sphinx) revealed extensive variability, suggesting that other OWMs may also possess high levels of Mhc-DRB polymorphism. In the present study, 33 Mhc-DRB loci were identified from only 13 animals. Eleven were wild-born and presumed to be unrelated and two were captive-born twins. Two to seven different sequences were identified for each individual, suggesting that some mandrills may have as many as four Mhc-DRB loci on a single haplotype. From these sequences, representatives of at least six Mhc-DRB loci or lineages were identified. As observed in other primates, some new lineages may have arisen through the process of gene conversion. These findings indicate that mandrills have Mhc-DRB diversity not unlike rhesus macaques and humans.  相似文献   

15.
16.
 Rhesus macaques represent important animal models for biomedical research. The ability to identify macaque major histocompatibility complex (Mhc) alleles is crucial for fully understanding these models of autoimmune and infectious disease. Here we describe a rapid and unambiguous way to distinguish DRB alleles in the rhesus macaque using the polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE), and direct sequencing. The highly variable second exon of Mamu-DRB alleles was amplified using generic DRB primers and alleles were separated by DGGE. DNA was then reamplified from plugs removed from the gel and alleles were determined using fluorescent-based sequencing. Validity of this typing procedure was confirmed by identification of all DRB alleles for three macaques previously characterized by cloning and sequencing techniques. Importantly, our analysis revealed DRB alleles not previously identified in the three reference animals. Using this technique, we identified 40 alleles in fifteen unrelated macaques. On the basis of phylogenetic tree analyses, 14 new DRB alleles were assigned to 10 different Mhc-DRB lineages. Interestingly, two of the new DRB6 lineages had previously been identified in prosimians and pigtailed macaques. Whereas traditional DRB typing methods provide limited information, our new technique provides a simple and relatively rapid way of identifying DRB alleles for tissue typing, determining individual identification and studies of disease association and susceptibility. This new technique should also contribute to ongoing studies of Mhc function and evolution in many different species of nonhuman primates. Received: 29 May 1996 / Revised: 8 August 1996  相似文献   

17.
The DRB region of the human major histocompatibility complex displays length polymorphism: Five major haplotypes differing in the number and type of genes they contain have been identified, each at appreciable frequency. In an attempt to determine whether this haplotype polymorphism, like the allelic polymorphism, predates the divergence of humansfrom great apes, we have worked out the organization of the DRB region of the chimpanzee Hugo using a combination of chromosome walking, pulsed-field gel electrophoresis, and sequencing. Hugo is a DRB homozygote whose single DRB haplotype is some 440 kilobases (kb) long and contains five genes. At least one and possibly two of these are pseudogenes, while three are presumably active genes. The genes are designated DRB * A0201, DRB2 * 0101, DRB3 * 0201, DRB6 * 0105, and DRB5 * 0301, and are arranged in this order on the chromosome. The DRB2 and DRB3 genes are separated by approximately 250 kb of sequence that does not seem to contain any additional DRB genes. The DRB * A0201 gene is related to the DRB1 gene of the human DR2 haplotype; the DRB2 * 0101 and DRB3 * 0201 genes are related to the DRB2 and DRB3 genes of the human DR3 haplotype, respectively; the DRB6 * 0105 and DRB5 * 0301 genes are related to the DRBVI and DRB5 genes of the human DR2 haplotype, respectively. Thus the Hugo haplotype appears to correspond to the entire human DR2 haplotype, into which a region representing a portion of the human DR3 haplotype has been inserted. Since other chimpanzees have their DRB regions organized in different ways, we conclude that, first, the chimpanzee DRB region, like the human DRB region, displays length polymorphism; second, some chimpanzee DRB haplotypes are longer than the longest known human DRB haplotypes; third, in some chimpanzee haplotypes at least, the DRB genes occur in combinations different from those of the human haplotypes; fourth, and most importantly, certain DRB gene combinations have been conserved in the evolution of chimpanzees and humans from their common ancestors. These data thus provide evidence that not only allelic but also haplotype polymorphism can be passed on from one species to another in a given evolutionary lineage.  相似文献   

18.
The major histocompatibility complex (Mhc) is a family of loci characterized by its relatively rapid evolutionary turnover, large genetic distances between genes, and long persistence of allelic lineages effected by balancing selection. These features render the Mhc highly suitable for answering questions concerning speciation and adaptive radiation. The aim of the present study was to use Mhc-DRB genes to make inferences about the founding population of the Platyrrhini. Three segments, each approximately 300 base pairs in length, of the platyrrhine DRB genes were amplified by the polymerase chain reaction and sequenced. The segments were derived from intron 2, exon 3, and exon 6 of DRB genes from different species of New World monkeys. The results of the study have revealed that on a phylogenetic tree, all of the tested platyrrhine genes appear to form a single cluster, while all catarrhine DRB genes form a distinct cluster, although the bootstrap values fail to provide statistically significant support for the separation of these two clades. This observation suggests that the multiple platyrrhine genes originated from a single ancestral gene after the divergence of the Platyrrhini and Catarrhini and thus contradicts the results of an earlier study in which some exon 2 DRB sequences appeared to predate the split of the two primate groups. The inconsistency in the DRB gene phylogeny can be explained by postulating convergent evolution for the peptide-binding region of the DRB exon 2 sequences. The phylogeny of the platyrrhine DRB genes (except for exon 2) is relatively "shallow"; the distances between genes are relatively short (in comparison to the catarrhine DRB genes), and there is a tendency for sequences of individual species to cluster together. The phylogeny of the platyrrhine DRB genes is consistent with the postulate that a small population founded the group and that there is an ongoing adaptive radiation from small, relatively isolated founding populations.  相似文献   

19.
The distributions of Assamese macaques (Macaca assamensis) and rhesus macaques (M. mulatta) in Bhutan have been only partially documented. In order to investigate the distribution patterns of these species, we conducted field observation and genetic assessment with mitochondrial DNA (mtDNA) typing of macaques in the Inner Himalayas of Bhutan. There were 24 sightings of macaque groups, and all were visually identified as Assamese macaques. No groups of rhesus macaques were sighted in this survey area, in contrast with the survey results in the Nepalese Himalayas. Molecular phylogenetic analysis revealed that the Bhutan macaques are closer in proximity to their counterparts in the Indo-Chinese region (Thailand and Laos) than to rhesus macaques in China, Laos and India. However, clustering results suggested the marked differentiation of the macaques in Bhutan from the Assamese macaques in Indo-China. We tentatively conclude that the macaques of the Inner Himalayan regions in Bhutan are Assamese macaques and that they appear to be of a lineage distinct from Assamese macaques in the Indo-Chinese region (subspecies M. a. assamensis). The degree of mtDNA diversity suggests that the Assamese macaques in Bhutan are of a more ancient ancestry than M. a. assamensis, thereby supporting the speciation hypothesis of the expansion of a sinica-group of macaques from South Asia to Southeast and then to East Asia (Fooden; Fieldiana Zool 45:1–44, 1988). Assignment of Assamese macaques in Bhutan to M. a. pelops is premature due to the lack of molecular data and recent taxonomic controversy. The mtDNA diversity of Assamese macaques was greater than that of rhesus macaques, suggesting the earlier speciation of Assamese macaques. The significance of the ecogeographic segregation model of macaque distribution is discussed in relation to the evolutionary range expansion into the Himalayan regions in South Asia.  相似文献   

20.
 The New World primate Aotus nancymaae is susceptible to infection with the human malaria parasite Plasmodium falciparum and Plasmodium vivax and has therefore been recommended by the World Health Organization as a model for evaluation of malaria vaccine candidates. We present here a first step in the molecular characterization of the major histocompatibility complex (MHC) class II DRB genes of Aotus nancymaae (owl monkey or night monkey) by nucleotide sequence analysis of the polymorphic exon 2 segments. In a group of 15 nonrelated animals captivated in the wild, 34 MHC DRB alleles could be identified. Six allelic lineages were detected, two of them having human counterparts, while two other lineages have not been described in any other New World monkey species studied. As in the common marmoset, the diversity of DRB alleles appears to have arisen largely by point mutations in the β-pleated sheets and by frequent exchange of fixed sequence motifs in the α-helical portion. Pairs of alleles differing only at amino acid position b86 by an exchange of valine to glycine are present in Aotus, as in humans. Essential amino acid residues contributing to MHC DR peptide binding pockets number 1 and 4 are conserved or semiconserved between HLA-DR and Aona-DRB molecules, indicating a capacity to bind similar peptide repertoires. These results support fully our using Aotus monkeys as an animal model for evaluation of future subunit vaccine candidates. Received: 10 August 1999 / Revised: 11 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号