首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract: Cells dissociated from the postnatally developing rat cerebellum retain their high-affinity carrier-mediated transport systems for [3H]GABA ( K t=1.9 μM, V = 1.8 pmol/106 cells/min) and [3H]glutamate ( K t= 10 μM, V = 7.9 pmol/106 cells/min). Using a unit gravity sedimentation technique it was demonstrated that [3H]GABA was taken principally into fractions that were enriched in inhibitory neurons (Purkinje, stellate and basket cells). [3H]β-alanine (which is taken up specifically by the glial GABA transport system) and [3H]glutamate were concentrated by glial-enriched fractions. However [3H]glutamate uptake was minimal in fractions enriched in precursors of granule cells, which may utilise this amino acid as their neurotransmitter. These results are discussed in relation to reports of high-affinity [3H]glutamate uptake by glia. The role of glutamate transport in glutamatergic cells is also considered. The data suggest that high-affinity glutamate transport is a property of glial cells but not granule neurons.  相似文献   

2.
Abstract Whole cells of the dinitrogen-fixing cyanobacterium Anabaena sp. PCC7120 exhibited K m values for l -glutamine and l -glutamate of 33 μM and 0.5 mM, respectively. V max of uptake was ca. 30 nmol mg−1 (chlorophyll) min−1 for both amino acids. The similar pattern of sensitivity to other amino acids exhibited by both transport activities suggests that a common transport system is involved in glutamine and glutamate uptake by this cyanobacterium.  相似文献   

3.
Abstract: Understanding the mechanism of brain glucose transport across the blood-brain barrier is of importance to understanding brain energy metabolism. The specific kinetics of glucose transport have been generally described using standard Michaelis-Menten kinetics. These models predict that the steady-state glucose concentration approaches an upper limit in the human brain when the plasma glucose level is well above the Michaelis-Menten constant for half-maximal transport, K t. In experiments where steady-state plasma glucose content was varied from 4 to 30 m M , the brain glucose level was a linear function of plasma glucose concentration. At plasma concentrations nearing 30 m M , the brain glucose level approached 9 m M , which was significantly higher than predicted from the previously reported K t of ∼4 m M ( p < 0.05). The high brain glucose concentration measured in the human brain suggests that ablumenal brain glucose may compete with lumenal glucose for transport. We developed a model based on a reversible Michaelis-Menten kinetic formulation of unidirectional transport rates. Fitting this model to brain glucose level as a function of plasma glucose level gave a substantially lower K t of 0.6 ± 2.0 m M , which was consistent with the previously reported millimolar K m of GLUT-1 in erythrocyte model systems. Previously reported and reanalyzed quantification provided consistent kinetic parameters. We conclude that cerebral glucose transport is most consistently described when using reversible Michaelis-Menten kinetics.  相似文献   

4.
Abstract: Poly(A)+ mRNA was isolated from cultured mouse cerebellar granule cells and injected into Xenopus oocytes. This led to the expression of receptors that evoked large membrane currents in response to glycine. Current-responses were also obtained after application of β-alanine and taurine, but these were very low relative to that of glycine (maximal β-alanine and taurine responses were 8 and 3% of that of glycine, respectively). The role of glycine receptors on K+-evoked transmitter release in cultured cerebellar granule cells was also assayed. Release of preloaded d -[3H]aspartate evoked by 40 m M K+ was dose dependently inhibited by glycine, and the concentration producing half-maximal inhibition was 50 μ M. Taurine, β-alanine, and the specific GABAA receptor agonist isoguvacine also inhibited K+-evoked release, and the maximal inhibition was similar for all agonists (˜40%). The EC50 value was 200 μ M for taurine, 70 μ M for β-alanine, and 4 μ M for isoguvacine. Bicuculline (150 μ M ) antagonized the inhibitory effect of isoguvacine (150 μ M ) but not that of glycine (1 m M ). In contrast, strychnine (20 μ M ) antagonized the inhibitory effect of glycine (1 m M ) but not that of isoguvacine (150 μ M ). The pharmacology of the responses to β-alanine and taurine showed that these agonists activate both glycine and GABAA receptors. The results indicate that cultured cerebellar granule cells translate the gene for the glycine receptor and that activation of glycine receptors produces neuronal inhibition.  相似文献   

5.
The Uptake of Carnitine by Slices of Rat Cerebral Cortex   总被引:5,自引:3,他引:2  
Abstract: The properties of carnitine transport were studied in rat brain slices. A rapid uptake system for carnitine was observed, with tissue-medium gradients of 38 ± 3 for L-[14CH3]carnitine and 27 ± 3 for D-[14CH3]carnitine after 180 min incubation at 37°C in 0.64 mM substrate. Uptake of L- and D-carnitine showed saturability. The estimated values of K m for L- and D-carnitine were 2.85 mM and 10.0 mM, respectively; but values of V max (1 μmol/min/ml in-tracellular fluid) were the same for the two isomers. The transport system showed stereospecificity for L-carnitine. Carnitine uptake was inhibited by structurally related compounds with a four-carbon backbone containing a terminal carboxyl group. L-Carnitine uptake was competitively inhibited by γ-butyrobetaine ( K i= 3.22 mM), acetylcarnitine ( K i= 6.36 mM), and γ-aminobutyric acid ( K i= 0.63 mM). The data suggest that carnitine and γ-aminobutyric acid interact at a common carrier site. Transport was not significantly reduced by choline or lysine. Carnitine uptake was inhibited by an N2 atmosphere, 2,4-dinitrophenol, carbonylcyanide- N -chlorophenylhydrazone, potassium cyanide, n-ethylmaleimide, and ouabain. Transport was abolished by low temperature (4°C) and absence of glucose from the medium. Carnitine uptake was Na+-dependent, but did not require K+ or Ca2+.  相似文献   

6.
Abstract The addition of 1 mM glycine betaine to the growth medium of Chromatium sp. NCIMB 8379 relieved growth inhibition caused by exposure to supra-optimal Nad concentrations. Intracellular glycine betaine concentrations were dependent upon the NaCl concentration of the growth medium up to 3 M exogenous Nad. Kinetic data for the accumulation of [methyl-14C]-glycine betaine demonstrated that Chromatium sp. NCIMB 8379 possesses a constitutively expressed active transport system for glycine betaine. The transport system was saturable with respect to glycine betaine concentration and exhibited typical Michaelis-Menten type kinetics: K m= 24 μ M, V max= 306 nmol min−1 mg protein−1 at an external NaCl concentration of 1 M. The rate of glycine betaine transport decreased progressively with increasing growth medium NaCl concentration. This transport system may represent an adaptive response to growth in high osmolarity environments in this halotolerant isolate, allowing accumulation of glycine betaine from the external cell environment or recycling synthesised glycine betaine which has passively diffused from the cell.  相似文献   

7.
Abstract— [3H]β-Alanine was accumulated by frog spinal cord slices by two transport components with estimated Km values of 31 M ('high-affinity') and 11 HIM ('low affinity') respectively. The high affinity uptake exhibited sodium ion and energy dependence, temperature sensitivity, had a very low Vmax (10.4 nmol/g/min) compared to GABA and glycine, was competitively inhibited by GABA (Kt 2 M), and was significantly reduced by the presence of glycine and of taurine in the incubating medium.
When slices preloaded with [3H]β-alanine were superfused with medium containing depolarizing concentrations of potassium ions, there was a small, but consistent, increase in [3H]β-alanine efflux: 1.4 times prestimulation rates in 40 mM potassium. When the superfusate was altered by omission of calcium and addition of concentrations of magnesium (10 mm), manganese (1 mM), and cobalt (1 mM) ions sufficient to block reflex transmission in the isolated in vitro frog cord, the potassium-evoked release was not blocked. Release was decreased by lanthanum ions (1 mM). Release of [3H]GABA and [3H]glycine in parallel experiments was inhibited by magnesium, manganese, cobalt and lanthanum. Veratridine significantly increased the release of [3H]GABA and [3H]glycine but not of [3H]β-alanine.
These observations demonstrate the non-specificity of β-alanine uptake and the unconventional nature of the calcium-dependence of β-alanine release and therefore do not lend support to the hypothesis that β-alanine functions as a neurotransmitter in frog spinal cord.  相似文献   

8.
Abstract: The rat ventral tegmentum (containing somata and dendrites of mesolimbic dopaminergic neurones) contained 1.3 μmnol/g wet weight of glycine. Slices of ventral tegmentum accumulated exogenous [3H]glycine by an energy-, temperature- and sodium-dependent mechanism. The uptake was mediated by two different transport systems; one system with relatively low affinity for glycine ( Km ∼400 μ m ) and the other a higher affinity for glycine ( Km ∼ 10 μ m ). Small amino acid analogues of glycine inhibited the uptake process, the most potent being taurine and β-alanine (47% and 44% inhibition, respectively, at 1 m m ). Release of exogenous [3H]glycine by elevated potassium and by protoveratrine A was calcium-dependent and tetrodotoxin-sensitive. Glycine (500 μ m -2 m m ) potentiated the protoveratrine A-induced release of exogenous [3H]dopamine from slices of ventral tegmentum; this potentiation was blocked by strychnine (10 μ m ). A convulsant dose of strychnine elevated the concentration of 3,4-dihydroxyphenylacetic acid in the ventral tegmentum. Glycine is likely to be a transmitter in the ventral tegmentum and to have a role regulating the activity of somatodendritic regions of mesolimbic dopaminergic neurones.  相似文献   

9.
Uptake and turnover of acetate in hypersaline environments   总被引:2,自引:0,他引:2  
Abstract: Acetate uptake and turnover rates were determined for the heterotrophic community in hypersaline environments (saltern crystallizer ponds, the Dead Sea) dominated by halpphilic Archaea. Acetate was formed from glycerol, which is potentially the major available carbon source for natural communities of halophilic Archaea. Values of [ K t+ S n] (the sum of the substrate affinity and the substrate concentration present in situ) for acetate measured in saltern crystallizer ponds were around 4.5–11.5 μM, while in the Dead Sea during a Dunaliella bloom values up to 12.8 μM were found. Maximal theoretical rates ( V max) of acetate uptake in saltern crystallizer ponds were 12–56 nmol l−1 h−1, with estimated turnover times for acetate ( T t) between 127–730 h at 35°C. V max values measured in the Dead Sea were between 0.8 and 12.8 nmol l−1 h−1, with turnover times in the range of 320–2190 h. V max values for acetate were much lower than those for glycerol. Comparisons with pure cultures of halophilic Archaea grown under different conditions showed that the natural communities were not adapted for preferential use of acetate. Both in natural brines and in pure cultures of halophilic Archaea, acetate incorporation rates rapidly decreased above the optimum pH value, probably since acetate enters the cell only in its unionized form. The low affinity for acetate, together with low potential utilization rates result in the long acetate turnover times, which explains the accumulation of acetate observed when low concentrations of glycerol are supplied as a nutrient to natural communities of halophilic Archaea.  相似文献   

10.
Abstract: The uptake of 3',3,5-triiodo- l -thyronine (T3) and l -thyroxine (T4) by primary cultures derived from rat brain hemispheres was studied under initial velocity conditions, at 25°C. Uptake of both hormones was carrier mediated and obeyed simple Michaelis-Menten kinetics. The K m of T3 uptake was very similar to that of T4, and did not vary significantly from day 1 to 4 in culture (310–400 n M ). The maximal velocity ( V max) of T3 uptake nearly doubled between day 1 and 4 of culture (41 ± 3 vs. 70 ± 5 pmol/min/mg of DNA, respectively). The V max of T4 uptake did not change (28 ± 8 and 31 ± 4 pmol/min/mg of DNA on days 1 and 4, respectively). The rank order of unlabeled thyroid hormone analogues to compete with labeled T3 or T4 uptakes were the same (T3 > T4 > 3',5',3-triiodo- l -thyronine > 3',3,5-triiodo- d -thyronine > triiodothyroacetic acid), indicating that the transport system is stereospecific. Unlabeled T4 was a stronger competitor of labeled T4 uptake than of labeled T3 uptake, whereas unlabeled T3 had the same potency for both processes. These results suggest that T3 and T4 are transported either by two distinct carriers or by the same carrier bearing separate binding sites for each hormone. They also indicate that the efficiency of T3 uptake increases during neuronal maturation.  相似文献   

11.
Abstract: The relationship between the transport of thyroid hormones and that of amino acids was examined by measuring the uptake of amino acids that are characteristic substrates of systems L, A, and N, and the effect of 3,3',5-triiodo-L-thyronine (T3) on this uptake, in cultured astrocytes. Tryptophan and leucine uptakes were rapid, Na+-independent, and efficiently inhibited by T3 (half-inhibition at ∼ 2 μ M ). Two Na+-independent L-like systems (L1 and L2), common to leucine and aromatic amino acids, were characterized kinetically. System L2 had a low affinity for leucine and tryptophan ( K m= 0.3–0.9 m M ). The high-affinity system L1 ( K m∼ 10 μ M for both amino acids) was competitively inhibited by T3 with a K i of 2–3 μ M (close to the T3 transport K m). Several T3 analogues inhibited system L1 and the T3 transport system similarly. Glutamine uptake and α-(methylamino)isobutyric acid uptake were, respectively, two and 200 times lower than tryptophan and leucine uptakes. T3 had little effect on the uptakes of glutamine and α-(methylamino)isobutyric acid. The results indicate that the T3 transport system and system L1 are related.  相似文献   

12.
Abstract: The characteristics of β-alanine transport at the blood-brain barrier were studied by using primary cultured bovine brain capillary endothelial cells. Kinetic analysis of the β-[3H]alanine transport indicated that the transporter for β-alanine functions with Kt of 25.3 ± 2.5 µ M and J max of 6.90 ± 0.48 nmol/30 min/mg of protein in the brain capillary endothelial cells. β-[3H]Alanine uptake is mediated by an active transporter, because metabolic inhibitors (2,4-dinitrophenol and NaN3) and low temperature reduced the uptake significantly. Furthermore, the uptake of β-[3H]alanine required Na+ and Cl in the external medium. Stoichiometric analysis of the transport demonstrated that two sodium ions and one chloride ion are associated with one β-alanine molecule. The Na+ and Cl-dependent uptake of β-[3H]alanine was stimulated by a valinomycin-induced inside-negative K+-diffusion potential. β-Amino acids (β-alanine, taurine, and hypotaurine) inhibited strongly the uptake of β-[3H]alanine, whereas α- and γ-amino acids had little or no inhibitory effect. In ATP-depleted cells, the uptake of β-[3H]alanine was stimulated by preloading of β-alanine or taurine but not l -leucine. These results show that β-alanine is taken up by brain capillary endothelial cells, via the secondary active transport mechanism that is common to β-amino acids.  相似文献   

13.
THE CHEMICAL FORM OF DISSOLVED SI TAKEN UP BY MARINE DIATOMS   总被引:1,自引:0,他引:1  
Results of past studies of the pH-dependent Si uptake kinetics of Phaeodactylum tricornutum Bohlin suggested that the anion SiO(OH)     is the chemical form of dissolved Si taken up by marine diatoms. We determined the chemical form of Si taken up by three other marine diatom species and P. tricornutum by examining the kinetics of Si use under two dramatically different SiO(OH)     :Si(OH)4 ratios in seawater by varying pH from ≈8 to ≈9.6. Uptake rates were determined using a precise and sensitive 32Si tracer methodology. The pH-dependent uptake kinetics obtained for all species except P. tricornutum suggest that marine diatoms transport Si(OH)4. The half-saturation constant (K m ) varies strongly as a function of pH for all species when the substrate of transport is assumed to be SiO(OH)     . Kinetic curves for Thalassiosira pseudonana (Hustedt) Hasle et Heimdal, Thalassiosira weissflogii (Grunow) G. Fryxell et Hasle, and Cylindrotheca fusiformis Reimann et Lewin have statistically identical values of K m at each pH when the substrate for transport is assumed to be Si(OH)4 ( T. pseudonana and T. weissflogii ) or total dissolved silicon ( C. fusiformis ). In contrast, P. tricornutum exhibits unusual biphasic uptake kinetics: uptake conforms to Michaelis–Menten kinetics up to 15 to 25 μM, above which uptake increases linearly. This enigmatic response may have biased conclusions drawn from past experiments using this species. However, based on the consistency of the results for the three other species, a new model of Si transport in marine diatoms is proposed on the basis of the direct formation of a complex between the Si-transport protein and Si(OH)4.  相似文献   

14.
Abstract: Two groups of GABA (γ-aminobutyric acid) analogues, one comprising derivatives of β-proline and the other compounds structurally related to nipecotic acid, were investigated as potential inhibitors of high-affinity GABA transport in neurons and glial cells, as well as displacers of GABA receptor binding. In addition to cis -4-hydroxynipecotic acid, which is known as a potent inhibitor of GABA uptake, homo-β-proline was the only compound which proved to be a potent inhibitor of glial as well as neuronal GABA uptake. IC50 values for GABA uptake into glial cells and brain cortex "prisms" were 20 and 75 μM, respectively, and the IC50 value obtained for GABA uptake into cultured neurons was 10 μM. A kinetic analysis of the action of homo-β-proline on GABA uptake into cultured astrocytes and neurons showed that this compound acts as a competitive inhibitor of GABA uptake in both cell types. From the apparent K m values, K i values for homo-β-proline of 16 and 6 μM could be calculated for glial and neuronal uptake, respectively. This mechanism of action strongly suggests that homo-β-proline interacts with the GABA carriers. Furthermore, homo-β-proline also displaced GABA from its receptor with an IC50 value of 0.3 μM. The cis -4-hydroxynipecotic acid analogues, cis- and trans-4-mercaptonipecotic acid, had no inhibitory effect on glial or neuronal GABA uptake. Other SH reagents, PCMB, NEM and DTNB, were shown to be relatively weak inhibitors of GABA uptake into cultured astrocytes, suggesting that SH groups are not directly involved in the interaction between GABA and its transport carrier.  相似文献   

15.
Abstract: Characteristics of the transport of the nitric oxide synthase substrate l -arginine and its inhibitor, N G-nitro- l -arginine ( l -NOARG), into rat cerebellar synaptosomes were studied. Uptake of both l -arginine and l -NOARG was linear with increasing amount of protein (up to 40 µg) and time of incubation (up to 5 min) at 37°C. Uptake of both compounds reached a steady state by 20 min. Maximal uptake of l -NOARG (650 pmol/mg of protein) was three to four times higher than that of l -arginine (170 pmol/mg of protein). l -NOARG uptake showed biphasic kinetics ( K m 1 = 0.72 m M , V max 1 = 0.98 nmol/min/mg of protein; K m 2 = 2.57 m M , V max 2 = 16.25 nmol/min/mg of protein). l -Arginine uptake was monophasic with a K m of 106 µ M and a V max of 0.33 nmol/min/mg of protein. l -NOARG uptake was selectively inhibited by l -NOARG, N G-nitro- l -arginine methyl ester, and branched-chain and aromatic amino acids. l -Alanine and l -serine also inhibited l -NOARG uptake but with less potency. Uptake of l -arginine was selectively inhibited by N G-monomethyl- l -arginine acetate and basic amino acids. These studies suggest that in rat cerebellar synaptosomes, l -NOARG is transported by the neutral amino acid carrier systems T and L with high affinity, whereas l -arginine is transported by the basic amino acid carrier system y+ with high affinity. These data indicate that the concentration of competing amino acids is an important factor in determining the rates of uptake of l -NOARG and l -arginine into synaptosomes and, in this way, may control the activity of nitric oxide synthase.  相似文献   

16.
Changes in sugar uptake into strawberry fruits with maturation and the hormonal effect on uptake mechanisms, though important to fruit development, are not known. Therefore, the kinetics of sugar uptake into strawberry ( Fragaria x ananassa Duch cv. Nyoho) fruit tissue and the effects of abscisic acid (ABA) and indoleacetic acid (LAA) on the mechanism of uptake were investigated at 25 and 35 days after pollination (DAP). Uptake of 14C-sugar was measured over the concentration range of 2 to 30 m M. Uptake kinetics showed a biphasic response to increasing external concentration of 14C-sugars, and indicated the presence of P -chlorormercuribenzenesulfonic acid (PCMBS)-sensitive and PCMBS-insensitive uptake. The Km value for each sugar was in the range of 10 to 20 m M. Stage of development had no effect on Km. but Vmax for glucose decreased with maturation. Further, sucrose was not taken up through a PC-MBS-sensitive transport at 35 DAP. ABA, especially 10 μ M , at 25 DAP stimulated uptake of all sugars, mostly through enhanced PCMBS-insensitive uptake but not PC-MBS-sensitive uptake. In contrast to ABA, stimulation of sugar uptake by IAA was most effective at 1 μ M . The PCMBS-insensitive uptake of each sugar was also stimulated by IAA. Further, the PCMBS-sensitive uptake of glucose was enhanced. The developmental change of PCMBS-sensitive sugar uptake and the effect of ABA and IAA on uptake mechanism in this study are considered to be important in influencing the development and enlargement of fruits.  相似文献   

17.
Abstract: (RS)-Nipecotic acid is taken up into cultured astrocytes by a saturable high-affinity transport system with a Km, of 28.8 ± 2.8 μM and a Vmax of 0.294 ± 0.022 nmol × min−1× [mg cell protein]−1. The uptake which represents a net inward transport was sodium-dependent, requiring translocation of one sodium ion for each molecule of nipecotic acid taken up. The most potent inhibitors of GABA uptake into astrocytes (GABA, (R)-nipecotic acid, (3RS,4SR)-4-hydroxynipecotic acid, and guvacine) were shown to be potent inhibitors of nipecotic acid uptake (IC50) 20, 25, 25, and 50 μm respectively), GABA being a competitive inhibitor. (S)-2,4-Diaminobutyric acid was a more efficient inhibitor than β-alanine of glial uptake of (RS)-nipecotic acid. It is concluded that astroglial uptake of (RS)-nipecotic acid and GABA is mediated by the same transport system.  相似文献   

18.
Iron inefficiency in the maize ( Zea mays L.) mutant ysl is caused by a defect in the uptake system for Fe-phytosiderophores. To characterize this defect further, the uptake kinetics of Fe-phytosiderophores in ysl was compared to the Fe-efficient maize cultivar Alice. Short-term uptake of 59Fe-labeled Fe-deoxymugineic acid (Fe-DMA) was measured over a concentration range of 0.03 to 300 μM. Iron uptake in Fe-deficient plants followed Michaelis-Menten kinetics up to about 30 μM and was linear at higher concentrations, indicating two kinetically distinct components in the uptake of Fe-phytosiderophores. The saturable component had similar Km (∼ 10 μM) in both genotypes. In contrast. Vmax was 5.5 μmol Fe-DMA g−1 dry weight [30 min]−1 in Alice, but only 0.6 μmol Fe-DMA g−1 dry weight [30 min]−1 in ysl. Uptake experiments with double-labeled 59Fe-[14C]DMA suggest that in both cultivars Fe-DMA was taken up by the roots as the intact chelate. The results indicate the existence of a high-affinity and a low-affinity uptake system mediating Fe-phytosiderophore transport across the root plasma membrane in maize. Apparently, the mutation responsible for Fe inefficiency in ysl affected high-affected uptake and led to a decrease in activity and/or number of Fe-phytosiderophore transporters.  相似文献   

19.
Abstract: The kinetics of seRotonin N -acetyltransferase (NAT) from the lateral eye of Rana perezi have been characterized. NAT from ocular tissue reached maximal activity at a phosphate buffer concentration of 250 m M and a pH of 6.5. Reaction linearity was highly conserved within the homogenate fraction range tested (0.033-0.33). The time course of ocular NAT reaction showed a high linearity at 25 and 35°C. K m and Vmax estimations for acetyl-CoA at a 10 m M tryptamine concentration were 63.3 μ M and 4.42 nmol/h per eye, respectively. Regardless of the acceptor amine (tryptamine or serotonin), the K m was not affected by the acetyl-CoA concentration (50 or 250 μ M ), whereas the V max was significantly increased at a 250 μ M acetyl-CoA concentration. Ocular NAT showed a higher affinity for serotonin ( K m= 20.7 μ M ) than for tryptamine ( K m= 48-60 μ M ); V max however, was similar for both substrates. Acetyl-CoA does not protect ocular NAT; in contrast, the use of EGTA (4 m M ) in the assay is essential to protect the enzyme because NAT in ocular crude homogenate shows rapid inactivation. This result suggests that intracellular calcium levels are involved in the NAT inactivation mechanisms in frog ocular tissue.  相似文献   

20.
l -Cysteine and methionine are unique amino acids that act as sulfur donors in all organisms. In the specific case of Trypanosomatids, l -cysteine is particularly relevant as a substrate in the synthesis of trypanothione. Although it can be synthesized de novo , l -cysteine is actively transported in Trypanosoma cruzi epimastigote cells. l -Cysteine uptake is highly specific; none of the amino acids assayed yield significant differences in terms of transport rates. l -Cysteine is transported by epimastigote cells with a calculated apparent K m of 49.5 μM and a V max of about 13 pmol min−1 per 107 cells. This transport is finely regulated by amino acid starvation, extracellular pH, and between the parasite growth phases. In addition, l -cysteine is incorporated post-translationally into proteins, suggesting its role in iron–sulfur core formation. Finally, the metabolic fates of l -cysteine were predicted in silico .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号