首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Cell cycle, proteolysis and cancer   总被引:11,自引:0,他引:11  
  相似文献   

2.
It is generally accepted that progression through the eukaryotic cell cycle is driven by cyclin-dependent kinases (CDKs), which are regulated by interaction with oscillatory expressed proteins called cyclins. CDKs may be separated into 2 categories: essential and non-essential. Understandably, more attention has been focused on essential CDKs because they are shown to control cell cycle progression to a greater degree. After clearly determining the basic and “core” mechanisms of essential CDKs, several questions arise. What role do non-essential CDKs play? Are these CDKs functionally redundant and do they serve as a mere backup? Or might they be responsible for some accessory tasks in cell cycle progression or control? In the present review we will try to answer these questions based on recent findings on the involvement of non-essential CDKs in cell cycle progression. We will analyse the most recent information with regard to these questions in the yeast Saccharomyces cerevisiae, a well-established eukaryotic model, and in its unique non-essential CDK involved in the cell cycle, Pho85. We will also briefly extend our discussion to higher eukaryotic systems.  相似文献   

3.
In eukaryotic cells, the basic machinery of cell cycle control is highly conserved. In particular, many cellular events during cell cycle progression are controlled by cyclin-dependent kinases (CDKs). The cell cycle in animal early embryos, however, differs substantially from that of somatic cells or yeasts. For example, cell cycle checkpoints that ensure that the sequence of cell cycle events is correct have been described in somatic cells and yeasts but are largely absent in embryonic cells. Furthermore, the regulation of CDKs is substantially different in the embryonic and somatic cells. In this study, we address the nature of the first cell cycle in the brown alga Fucus, which is evolutionarily distant from the model systems classically used for cell cycle studies in embryos. This cycle consists of well-defined G1, S, G2, and M phases. The purine derivative olomoucine inhibited CDKs activity in vivo and in vitro and induced different cell cycle arrests, including at the G1/S transition, suggesting that, as in somatic cells, CDKs tightly control cell cycle progression. The cell cycle of Fucus zygotes presented the other main features of a somatic cell cycle, such as a functional spindle assembly checkpoint that targets CDKs and the regulation of the early synthesis of two PSTAIRE CDKs, p32 and p34, and the associated histone H1 kinase activity as well as the regulation of CDKs by tyrosine phosphorylation. Surprisingly, the synthesis after fertilization of p32 and p34 was translationally regulated, a regulation not described previously for CDKs. Finally, our results suggest that the activation of mitotic CDKs relies on an autocatalytic amplification mechanism.  相似文献   

4.
Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression.  相似文献   

5.
In plants, different families of cyclin-dependent kinases (CDKs) and cyclins have been identified, indicating that also in plants the progression through the cell cycle is regulated by CDKs. In all eukaryotes, CDKs exert their activity through well-controlled phosphorylations of specific substrates on serine/threonine residues. Such post-translational modifications are universal mechanisms in signal transduction pathways. They allow the organism to differentiate, regulate growth and/or adapt to environmental changes, the latter being crucial for plants because of their sedentary life-style. This adaptation might explain the occurrence of a special CDK type with plant-specific features. This review focuses on the involvement of plant CDKs in different phases of the cell cycle in Arabidopsis thaliana and outlines their regulation by binding to other proteins, and by phosphorylation and dephosphorylation.  相似文献   

6.
Lara Wohlbold  Robert P. Fisher   《DNA Repair》2009,8(9):1018-1024
Cell division and the response to genotoxic stress are intimately connected in eukaryotes, for example, by checkpoint pathways that signal the presence of DNA damage or its ongoing repair to the cell cycle machinery, leading to reversible arrest or apoptosis. Recent studies reveal another connection: the cyclin-dependent kinases (CDKs) that govern both DNA synthesis (S) phase and mitosis directly coordinate DNA repair processes with progression through the cell cycle. In both mammalian cells and yeast, the two major modes of double strand break (DSB) repair – homologous recombination (HR) and non-homologous end joining (NHEJ) – are reciprocally regulated during the cell cycle. In yeast, the cell cycle kinase Cdk1 directly promotes DSB repair by HR during the G2 phase. In mammalian cells, loss of Cdk2, which is active throughout S and G2 phases, results in defective DNA damage repair and checkpoint signaling. Here we provide an overview of data that implicate CDKs in the regulation of DNA damage responses in yeast and metazoans. In yeast, CDK activity is required at multiple points in the HR pathway; the precise roles of CDKs in mammalian HR have yet to be determined. Finally, we consider how the two different, and in some cases opposing, roles of CDKs – as targets of negative regulation by checkpoint signaling and as positive effectors of repair pathway selection and function – could be balanced to produce a coordinated and effective response to DNA damage.  相似文献   

7.
The study of cell cycle control in plants is expected to contribute to the understanding of plants' unique developmental features. The principal regulators of the eukaryotic cell cycle, namely, cyclin-dependent kinases (CDKs) and cyclins, are also conserved in plants. This review is concerned with our present knowledge on cell cycle regulation in Arabidopsis thaliana, which is widely accepted as a model plant for the study of a broad range of biological questions. Up to the present, 2 CDKs and 11 cyclins have been identified in Arabidopsis. While the expression of one of these CDKs has been found to be positively correlated with the competence of cells to divide, cyc1A1 expression of the cyclin has been almost exclusively confined to dividing cells. Although much remains to be studied concerning upstream regulators of these genes, the successful introduction of mutant CDKs into plants demonstrates the potential of using such an approach to intentionally modulate the plant cell cycle and development.  相似文献   

8.
9.
Green light for the cell cycle   总被引:21,自引:0,他引:21  
Inzé D 《The EMBO journal》2005,24(4):657-662
In recent years, considerable progress has been made in unraveling the control mechanisms operating on the plant cell cycle and most of the key regulators have now been identified, including cyclin-dependent kinases (CDKs), cyclins, CDK-inhibitory proteins, the WEE kinase and proteins of the retinoblastoma-related protein (RBR)/E2F/DP pathway. The review discusses recent developments in our understanding of the plant cell cycle machinery and highlights the role of the cell cycle in plant development.  相似文献   

10.
Plant cell cycle transitions   总被引:10,自引:0,他引:10  
Three decades have passed since the first recognition of restriction checkpoints in the plant cell cycle. Although many core cell cycle genes have been cloned, the mechanisms that control the G1-->S and G2-->M transitions in plants have only recently started to be understood. The cyclin-dependent kinases (CDKs) play a central role in the regulation of the cell cycle, and the activity of these kinases is steered by regulatory subunits, the cyclins. The activities of CDK-cyclin complexes are further controlled by an intricate panoply of monitoring mechanisms, which result in oscillating CDK activity during the division cycle. These fluctuations trigger transitions between the different stages of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号