首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We studied the binding of [3H]-spiperone on human term placental membranes. This binding reached plateau level after 30 min incubation at 37°C and was reversed (t1/2 ~ 5 min) by addition of an excess of unlabeled spiperone. Scatchard analysis of saturation experiments with increasing doses of [3H]-spiperone (0–25 nM) showed one class of high affinity binding sites with a dissociation constant (Kd) of 14 ± 2 nM and a maximal binding capacity (Bmax) of 222 ± 9 fmoles/mg protein. The affinity of 5 competitors was determined in competitive binding assays. The D2-dopamine antagonists were the most potent inhibitors: Ki for spiperone and haloperidol were 8 ± 2 and 56 ± 22 nM respectively. Dopamine inhibited [3H]-spiperone binding with a Ki of 570 ± 50 μM whereas Schering 23390 (D1 antagonist) and propranolol (β-adrenergic antagonist) were without effect. The binding was also inhibited by 100 μM GTPγS (38 ± 8% inhibition), indicating that the dopamine receptor is coupled with a GTP binding protein. These results demonstrate for the first time the presence of D2-dopamine receptors in human placenta.  相似文献   

2.
The binding of [3H]nitrendipine to membrane preparation from turtle and rabbit brain was studied. A single population of [3H]nitrendipine binding sites was detected in both species. [3H]nitrendipine bound with high affinity to brain membrane from both rabbit and turtle, revealing a significant population of binding sites (K d values of 0.55±0.05 nM and 0.56±0.04 nM and Bmax values of 122±11 and 275±18 fmol/mg of protein, respectively). Displacement studies showed a similar order of potency of various unlabeled ligands against [3H]nitrendipine both in rabbit or in turtle: nitrendipine > nifedipine ≥ nicardipine ≫ verapamil ≥ diltiazem. Our results show that a two fold increment of [3H]nitrendipine binding sites exists in the turtle brain respect to the rabbit.  相似文献   

3.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

4.
[3H]verapamil binding to muscle tubule membrane has the following properties. KD = 27 ± 5 nM and maximum binding capacity Bmax = 50 ± 5 pmol/mg of protein. A 1 = 1 stoichiometry of binding was found for the ratio of [3H]verapamil versus [3H] nitrendipine binding sites. The dissociation constant found at equilibrium is near that determined from the ratio of the rate constants for association (k1) and dissociation (k?1). Antiarrhythmic drugs like D600, diltiazem and bepridil are competitive inhibitors of [3H]verapamil binding with KD values between 40 and 200 nM. Dihydropyridine analogs are apparent non competitive inhibitors of [3H]verapamil binding with half-maximum inhibition values (K0.5) between 1 and 5 nM.  相似文献   

5.
Abstract

In the present study, we have provided evidence that [3H] rauwolscine and [3H] idazoxan bind to different sites in rabbit urethra. The [3H] idazoxan capacity and affinity was 215 ± 14 fmol/mg protein and 1.59 ± 0.16 nM while [3H] rauwolscine binding parameters were 45.9 ± 3.4 fmol/mg protein and 2.39 ± 0.27 nM. [3H] idazoxan specific binding was inhibited only by compounds possessing an imidazoli(di)ne or a guanidinium moiety, while [3H] rauwolscine specific binding was inhibited by phenylethanolamines and classical α-antagonists. [3H] idazoxan was inhibited by KCI in a competitive and by MnCI2 in a non-competitive way, while other cations such as Na+, Li+ and Mg2+ did not inhibit [3H] idazoxan binding. Moreover, we investigated the regional distribution of [3H] idazoxan and [3H] rauwolscine along the rabbit urethra using quantitative autoradiography. Analysis of the films revealed a different distribution of these two binding sites on the urethral sections.  相似文献   

6.
Abstract

Cooperative modulation of [3H]MK-801 binding to extensively washed pig cortical brain membranes in the presence of various concentrations of L-glutamate, glycine, spermine, CPP and DCKA was evaluated in association experiments. In saturation experiments [3H]MK-801 labelled a homogeneous population of binding sites with a Kd-value of 1.26 ± 0.18 nmol 1?1 and a Bmax-value of 2130 ± 200 fmol/mg protein. The pharmacological profile of this site was further evaluated in competition experiments with known NMDA receptor channel blockers. In nonequilibrium binding experiments EC50-values of reference compounds acting at the L-glutamate, at the glycine, and at the polyamine site, were determined by increasing or decreasing [3H]MK-801 binding. Ifenprodil reduced [3H]MK-801 binding in a biphasic manner. All the data obtained are in agreement with results from [3H]MK-801 binding to rodent as well as human brain membranes. This study therefore strongly suggests, that pig cortical membranes are a suitable alternative to rodent brain membranes, and an acceptable substitute for human brain membranes in [3H]MK-801 binding experiments.  相似文献   

7.
Abstract

The pharmacological characteristics of muscarinic receptor (mAChR) subtypes in canine left ventricular membranes (LVM) were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and [3H] N-methyl scopolamine ([3H]NMS) as ligands. Binding of [3H]QNB and [3H]NMS was saturable with respect to the radioligand concentrations. Analysis of binding isotherms by Scatchard plot showed that [3H]QNB and [3H] NMS bound to an apparently homogeneous population of mAChRs in LVM, with KD values of 390 ± 100 and 285 ± 34 pM and Bmax values of 240 ± 20 and 133 ± 9 fmol/mg protein, (n=6), respectively. The Hill coefficients for [3H]QNB and [3H]NMS binding were 0.95 ± 0.02 and 0.99 ± 0.01, respectively. Based on the competitive inhibition of [3H] ligand binding, atropine and NMS as well as the selective M1 antagonist PZ revealed no selectivity for these mAChRs. PZ competed with [3H]QNB or [3H]NMS for a single binding site with a Ki value of 0.23 ± 0.03 μM and 0.62 ± 0.10 μM, (n = 6), respectively, which is close to the values of M2 or M3 receptors. The data indicate that the M1 receptor subtype did not exist in canine LVM. Competition of [3H] ligand binding with selective M2 antagonists, AF-DX 116 and methoctramine and the selective M3 antagonists, 4-DAMP and hexahydrosiladifenidol, gave a best fit for a two-binding site model. The inhibition of carbachol-mediated phosphoinositide hydrolysis by PZ, AF-DX 116 and 4-DAMP, generated an affinity profile for this response also dissimilar to that described for the classical cardiac M2 response. Although no other muscarinic receptor mRNA has been detected in this tissue, these data suggest the presence of a second population of muscarinic sites, which may signify an M2 receptor diversity.  相似文献   

8.
Binding of N-formyl-methionyl-L-leucyl-[3H]phenylalanine (fML[3H]Ph) to human ejaculated spermatozoa and to its isolated plasma membrane was studied. Our data confirm the presence of specific receptors for f-MLPh in the human spermatozoa and suggest that whole spermatozoa receptors exist in two affinity states, one high-affinity, low-capacity specific receptor (Kd = 12.3 ± 0.5 nM, n = 22,285 ± 65,008 binding sites per sperm cell) and a second one (Kd = 700 ± 47 nM) that is not saturable, indicating a low-affinity, high-capacity nonspecific site. In contrast, sperm membrane showed only one class of binding site (Kd = 6.4 ± 0.12 nM), which was statistically different from that of the high-affinity binding site of intact spermatozoa. To explain this difference we discuss the possibility that first, the two binding affinities represent two interconvertible states of a single receptor population, which, depending on the metabolic activity of spermatozoa, may change its physicochemical properties; or second, they reflect two different processes, binding and/or transport into the spermatozoa.  相似文献   

9.
Abstract: Cross-reactions between dopamine D3 and σ receptor ligands were investigated using (±)-7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin [(±)-7-OH-[3H]DPAT], a putative D3-selective radioligand, in conjunction with the unlabeled σ ligands 1,3-di(2-tolyl)guanidine (DTG), carbetapentane, and R(?)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane [R(?)-PPAP]. In transfected CCL1.3 mouse fibroblasts expressing the human D3 receptor, neither DTG nor carbetapentane (0.1 µM) displaced (±)-7-OH-[3H]DPAT binding. R(?)-PPAP (0.1 µM) displaced 39.6 ± 1.0% of total (±)-7-OH-[3H]DPAT binding. In striatal and nucleus accumbens homogenates, (±)-7-OH-[3H]DPAT labeled a single site (15–20 fmol/mg of protein) with high (1 nM) affinity. Competition analysis with carbetapentane defined both high- and low-affinity sites in striatal (35 and 65%, respectively) and nucleus accumbens (59 and 41%, respectively) tissue, yet R(?)-PPAP identified two sites in equal proportion. Carbetapentane and R(?)-PPAP (0.1 µM) displaced ~20–50% of total (±)-7-OH-[3H]DPAT binding in striatum, nucleus accumbens, and olfactory tubercle in autoradiographic studies, with the nucleus accumbens shell subregion exhibiting the greatest displacement. To determine directly (+)-7-OH-[3H]DPAT binding to σ receptors, saturation analysis was performed in the cerebellum while masking D3 receptors with 1 µM dopamine. Under these conditions (+)-7-OH-[3H]DPAT labeled σ receptors with an affinity of 24 nM. These results suggest that (a) (±)-7-OH-[3H]DPAT binds D3 receptors with high affinity in rat brain and (b) a significant proportion of (±)-7-OH-[3H]DPAT binding consists of σ1 sites and the percentages of these sites differ among the subregions of the striatum and nucleus accumbens.  相似文献   

10.
A membrane fraction, which contained dopamine receptors and heterotrimeric G proteins, was purified from homogenate of molluscan (Lymnaea) CNS tissues. Radioligand binding analysis with the use of [7.8-3H] dopamine detected the presence of a high-affinity binding site in this fraction. [7.8-3H] Dopamine was displaced in a dose-dependent manner by dopamine antagonists, S(-)-sulpiride, (±)-SKF83566, and fluphenazine. Radioligand binding analysis of purified membranes with the use of labelled GDP showed the presence of a high affinity binding site withB max=92±5 pmol/mg of protein andK d =64±10 nM. GDP, in contrast to GTP, markedly increased [7.8-3H] dopamine binding in the absence of metal cations (the maximum increase was 2.5-fold). Added separately, Na and Mg ions decreased the stimulatory influence of GDP. Jointly, these ions completely abolished this GDP influence on the [7.8-3H] dopamine binding. In the membrane fraction, GTPase activity in the presence of dopamine increased during an initial period and then decreased below the basal level. Therefore, we have demonstrated that in our experiments dopamine receptors in the purified membrane fraction are functionally coupled with heterotrimeric G proteins, but their interaction displays some specific features.  相似文献   

11.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   

12.
The influence of β-adrenoceptor activation and inhibition by isoprenaline and propranolol on the specific binding of nonselective α1- and α2-adrenoceptor antagonists [3H]prazosin and [3H]RX821002 in rat cerebral cortex subcellular membrane fractions was studied. It was established that for the α1- and α2-adrenoceptors the ligand–receptor interaction corresponds to the model of one affinity pool of receptors and binding of two ligand molecules by one dimer receptor. The parameters of [3H]prazosin binding to α1-adrenoceptors were: K d = 1.85 ± 0.16 nM, B max = 31.14 ± 0.35 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.57 ± 0.27 nM, B max = 7.2 ± 1.6 fmol/mg protein, n = 2. When β-adrenoceptors were activated by isoprenaline, the binding of radiolabelled ligands with α1- and α2-adrenoceptors occurred according to the same model. The affinity to [3H]prazosin and the concentration of active α1-adrenoceptors increased by 27% (K d = 1.36 ± 0.03 nM) and 84% (B max = 57.37 ± 0.28 fmol/mg protein), respectively. The affinity of α2-adrenoceptors to [3H]RX821002 decreased by 56% (K d = 3.55 ± 0.02 nM), and the concentration of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg protein). Propranolol alters the binding character of both ligands. For [3H]prazosin and [3H]RX821002, two pools of receptors were detected with the following parameters: K d1 = 1.13 ± 0.09, K d2 = 6.07 ± 1.06 nM, B m1 = 11.36 ± 1.77, Bm2 = 51.09 ± 0.41 fmol/mg protein, n = 2 and K d1 = 0.61 ± 0.02, K d2 = 3.41 ± 0.13 nM, B m1 = 1.88 ± 0.028, B m2 = 9.27 ± 0.08 fmol/mg protein, n = 2, respectively. The concentration of active receptors (B max) increased twofold for both ligands. It was suggested that α1- and α2-adrenoceptors in rat cerebral cortex subcellular membrane fractions exist as dimers. A modulating influence of isoprenaline and propranolol on the specific binding of the antagonists to α1- and α2- adrenoceptors was revealed, which was manifested in the activating effect on the [3H]prazosin binding parameters, in the inhibitory effect on the [3H]RX821002 binding parameters, and in a change of the general character of binding for both ligands.  相似文献   

13.
The promethazine-sensitive binding of [3H]mepyramine to a membrane fraction from guinea-pig whole brain is saturable with a dissociation constant of 1.7 × 10-9M. The maximum amount of [3H]mepyramine binding varied widely between preparations, range 122–365 pmol/g protein, with a mean value of 227 ± 52 pmol/g protein. The inhibition of [3H]mepyramine binding by a number of drugs correlated closely with their potency as histamine H1 antagonists. (+) Chlorpheniramine was 240-fold more potent as an inhibitor of [3H]mepyramine binding than (-)-chlorpheniramine. All antagonists inhibited the binding of [3H]mepyramine to the same extent, but the Hill coefficients characterising the inhibition curves did not all approximate to unity, the value expected for a simple antagonist-receptor equilibrium. The distribution of histamine H1 receptors, defined by the promethazine-sensitive binding of [3H]mepyramine, in 11 different brain regions was uneven with the largest amounts in cerebellum, superior and inferior colliculus and hypothalamus and the smallest in caudate nucleus, brain stem and spinal cord.  相似文献   

14.
The influence of isoprenaline- and propranolole-induced activation and inhibition of β-adrenoreceptors on the specific nonselective α2-antagonist [3H]RX821002 binding was studied on rat cerebral cortex subcellular membrane fractions. It was shown that the ligand-receptor interaction for α2-adrenoreceptors corresponded to the model that assumed the presence of one receptor pool and binding of two ligand molecules to a receptor dimer. The following parameters were determined for [3H]RX821002 binding to α2-adrenoreceptors: K d1 = 1.57 ± 0.27 nM, B max = 7.24 ± 1.63 fmol/mg of protein, n = 2. In the case of isoprenaline-induced activation of β-adrenoreceptors the binding of radiolabeled ligand to α2-adrenoreceptors was described by the same model. The affinity of α2-adrenoreceptors for [3H]RX821002 decreased more than twofold (K d = 3.55 ± 0.02 nM) and the quantity of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg of protein). Propranolole changed the model of ligand binding, and two pools of receptors were detected with the following parameters: K d1 = 0.61 ± 0.02 nM, K d2 = 3.41 ± 0.13 nM, B ml = 1.88 ± 0.028 fmol/mg of protein, B m2 = 9.27 ± 0.08 fmol/mg of protein, n = 2. The data suggest that α2-adrenoreceptors in subcellular membrane fractions from rat cerebral cortex exist in dimeric form. Isoprenaline and propranolole exhibit modulating effect on the specific antagonist binding to α2-adrenoreceptors, which results in the inhibition and alteration of [3H]RX821002 binding parameters.  相似文献   

15.
Abstract: High-affinity μ-opioid receptors have been solubilized from rat brain membranes. In most experiments, rats were treated for 14 days with naltrexone to increase the density of opioid receptors in brain membranes. Occupancy of the membrane-associated receptors with morphine during solubilization in the detergent 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate appeared to stabilize the μ-opioid receptor. After removal of free morphine by Sephadex G50 chromatography and adjustment of the 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate concentration to 3 mM, the solubilized opioid receptor bound [3H][d -Ala2,N-Me-Phe4,Gly-ol5]-enkephalin ([3H]DAMGO), a μ-selective opioid agonist, with high affinity (KD = 1.90 ± 0.93 nM; Bmax = 629 ± 162 fmol/mg of protein). Of the membrane-associated [3H]-DAMGO binding sites, 29 ± 7% were recovered in the solubilized fraction. Specific [3H]DAMGO binding was completely abolished in the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate). The solubilized receptor also bound [3H]diprenorphine, a nonselective opioid antagonist, with high affinity (KD = 1.4 ± 0.39 nM, Bmax = 920 ± 154 fmol/mg of protein). Guanosine 5′-O-(3-thiotriphosphate) did not diminish [3H]diprenorphine binding. DAMGO at concentrations between 1 nM and 1 µM competed with [3H]diprenorphine for the solubilized binding sites; in contrast, [d -Pen2,d -Pen5]-enkephalin, a δ-selective opioid agonist, and U50488H, a κ-selective opioid agonist, failed to compete with [3H]diprenorphine for the solubilized binding sites at concentrations of <1 µM. In the absence of guanine nucleotides, the DAMGO displacement curve for [3H]diprenorphine binding sites better fit a two-site than a one-site model with KDhigh = 2.17 ± 1.5 nM, Bmax = 648 ± 110 fmol/mg of protein and KDlow = 468 ± 63 nM, Bmax = 253 ± 84 fmol/mg of protein. In the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate), the DAMGO displacement curve better fit a one- than a two-site model with KD = 815 ± 33 nM, Bmax = 965 ± 124 fmol/mg of protein.  相似文献   

16.
Abstract

A method for measuring [3H]-AMPA binding in rat cortex membranes is described. Specific binding was saturable and accounted for 95% of total binding at 5 nM of [3H]-AMPA. Non linear curve fitting of [3H]-AMPA saturation isotherms suggested the presence of two binding sites: the high affinity site showed a pKd of 8.26 ± 0.07 (Kd = 5.49 nM) and a Bmax of 0.19 ± 0.03 pmol/mg protein, whereas the low affinity site indicated a pKd of 7.28 ± 0.05 (Kd = 52 nM) and a Bmax of 1.30 ± 0.23 pmol/mg protein. The pharmacological profile of [3H]-AMPA binding has been determined by studying a series of compounds in binding displacement experiments: Quisqualate was the most potent inhibitor of [3H]-AMPA binding (IC50 = 9.7 nM), followed by AMPA (19 nM), CNQX, DNQX and L-Glutamate (272–373 nM). Kainate was a moderate displacer (6.2 μM); Ibotenic acid and glycine were very weak inhibitors (74 and 92 μM, respectively). CPP, GAMS and L-Aspartic acid showed IC50-values of over 400 μM and MK-801, DL-AP5 and NMDA were almost inactive at the maximal concentration used in our experiments.  相似文献   

17.
Abstract: RS-42358–197{(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-2,4,5,6-tetrahydro-1H-benzo[de]isoquinolin-1-one hydrochloride} displaced the prototypic 5-hydroxytryptamine3 (5-HT3) receptor ligand [3H]quipazine in rat cerebral cortical membranes with an affinity (pKi) of 9.8 ± 0.1, while having weak affinity (pKi < 6.0) in 23 other receptor binding assays. [3H]RS-42358–197 was then utilized to label 5-HT3 receptors in a variety of tissues. [3H]RS-42358–197 labelled high-affinity and saturable binding sites in membranes from rat cortex, NG108–15 cells, and rabbit ileal myenteric plexus with affinities (KD) of 0.12 ± 0.01, 0.20 ± 0.01, and 0.10 ± 0.01 nM and densities (Bmax) of 16.0 ± 2.0, 660 ± 74, and 88 ± 12 fmol/mg of protein, respectively. The density of sites labelled in each of these tissues with [3H]RS-42358–197 was similar to that labelled with [3H]GR 65630, but was significantly less than that found with [3H]-quipazine. The binding of [3H]RS-42358–197 had a pharmacological profile similar to that of [3H]quipazine, as indicated by the rank order of displacement potencies: RS-42358–197 > (S)-zacopride > tropisetron > (R)-zacopride > ondansetron > MDL72222 > 5-HT. However, differences in 5-HT3 receptors of different tissues and species were detected on the basis of statistically significant differences in the affinities of phenylbiguanide, and 1-(m-chlorophenyl)biguanide when displacing [3H]RS-42358-197 binding. [3H]RS-42358–197 also labelled a population (Bmax= 91 ± 17 fmol/mg of protein) of binding sites in guinea pig myenteric plexus membranes, with lower affinity (KD= 1.6 ± 0.3 nM) than those in the other preparations. Moreover, the rank order of displacement potencies of 15 5-HT3 receptor ligands in guinea pig ileum was found not to be identical to that in other tissues. Binding studies carried out with [3H]RS-42358–197 have detected differences in 5-HT3 receptor binding sites in tissues of different species and further underscore the unique nature of the guinea pig 5-HT3 receptor.  相似文献   

18.
Specific leukotriene C4 (LTC4) binding sites were identified in membrane preparations from human fetal lung. Specific binding of [3H]-LTC4 represented 95 percent of total binding, reached steadystate within 10 minutes and was rapidly reversible upon addition of excess unlabeled LTC4. Binding assays were performed at 4°C under conditions which prevented metabolism of [3H]-LTC4 (80 mM serineborate, 10 mM cysteine, 10 mM glycine). Under these conditions, greater than 95 percent of the membrane bound radioactivity, as analyzed by high performance liquid chromatography, co-eluted with the LTC4 standard. Computer-assisted analyses of saturation binding data showed a single class of binding sites with a dissociation constant (Kd) of 26 + 6 nM and a density (Bmax) of 84 ± 18 pmol/mg protein. Pharmacological specificity was demonstrated by competition studies in which specific binding of [3H]-LTC4 was displaced by LTC4 and its structural analogs with inhibition constants (Kj) of 10 to 30 nM, whereas LTD4, diastereoisomers of LTD1, LTE4 and the end organ antagonist FPL 55712 were 150 to 700 fold less potent competitors than LTC4. These results provide evidence for specific, reversible, saturable, high affinity binding sites for [3H]-LTC4 in human fetal lung membranes.  相似文献   

19.
Kinetic analysis of binding of [3H][N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide ([3H]WAY100635) to 5-HT1A receptors in rat hippocampal membranes has revealed complex regulation mechanism for this radioligand. Saturation binding experiments revealed that [3H]WAY100635 binds to a single class of receptors with very high apparent affinity (K D = 87 ± 4 pM, B max = 15.1 ± 0.2 fmol/mg protein). The binding was almost irreversible, as the dissociation rate constant obtained k off = (7.8 ± 1.1) × 10−3 min−1, means that equilibrium with this radioligand cannot be achieved before 7.5 h incubation at 25°C. Systematic association kinetic studies of [3H]WAY100635 binding revealed sharp reaction acceleration at higher radioligand concentration, proposing mechanism of positive cooperativity. The affinities of antagonists determined from competition with [3H]WAY100635 did not coincide with their abilities to inhibit 5-HT-dependent activation of [35S]GTPγS binding probably due to the ligand’s kinetic peculiarities. Thus, [3H]WAY100635 appears to be an excellent tool for determining receptor binding sites, but its applicability in equilibrium studies is strongly limited.  相似文献   

20.
Abstract: High-affinity μ-opioid receptors have been solubilized from 7315c cell membranes. Occupancy of the membrane-associated receptors with morphine before their solubilization in the detergent 3-[(3-cholamidopropyl) dimethyl]-1-propane sulfonate was critical for stabilization of the receptor. The solubilized opioid receptor bound [3H]-etorphine with high affinity (KD= 0.304 ± 0.06 nM; Bmax= 154 ± 33 fmol/mg of protein). Of the membrane-associated [3H]etorphine binding sites, 40 ± 5% were recovered in the solubilized fraction. Both μ-selective and non-selective enkephalins competed with [3H]etorphine for the solubilized binding sites; in contrast, 5- and K-opioid enkephalins failed to compete with [3H]etorphine for the solubilized binding sites at concentrations of <1 μM.The μ-selective ligand [3H][D-Ala2,A/-Me-Phe4,Gly5-ol]enkephalin also bound with high affinity (KD= 0.79 rM; Bmax= 108±17 fmol/mg of protein) to the solubilized material. Of the membrane-associated [3H][D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin binding sites, 43 ± 3% were recovered in the solubilized material. Guanosine 5′-O-(3-thiotriphosphate), GTP, and guanosine 5′-O-(2-thiodiphosphate), but not adenylylimidodiphosphate, diminished [3H][D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin binding in a concentration-dependent manner. Finally, μ-opioid receptors from rat brain membranes were also solubilized in a high-affinity, guanine nucleotide-sensitive state if membrane-associated receptors were occupied with morphine before and during their solubilization with the detergent 3-[(3-cholamidopropyl) dimethyl]-1-propane sulfonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号