首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper compares the available North Americanliterature and data concerning several ecologicalfactors affecting Phragmites australisin inlandfreshwater, tidal fresh, and tidal brackish marshsystems. We compare aboveground productivity, plantspecies diversity, and sediment biogeochemistry; andwe summarize Phragmiteseffects on faunalpopulations in these habitats. These data suggest thatPhragmitesaboveground biomass is higher thanthat of other plant species occurring in the samemarsh system. Available data do not indicate anysignificant difference in the aboveground Phragmitesbiomass between marsh types, nor doesthere appear to be an effect of salinity on height.However, Phragmitesstem density wassignificantly lower in inland non-tidal freshwatermarshes than in tidal marshes, whether fresh orbrackish. Studies of the effects of Phragmiteson plant species richness suggest that Phragmitesdominated sites have lower diversity.Furthermore, Phragmiteseradication infreshwater sites increased plant diversity in allcases. Phragmitesdominated communities appearto have different patterns of nitrogen cyclingcompared to adjacent plant communities. Abovegroundstanding stocks of nitrogen (N) were found to behigher in Phragmitessites compared to thosewithout Phragmites. Porewater ammonium(NH4 +) did not differ among plant covertypes in the freshwater tidal wetlands, but inbrackish marshes NH4 +was much higher inSpartinaspp. than in neighboring Phragmitesstands. Faunal uses of Phragmitesdominated sites in North America were found to vary bytaxa and in some cases equaled or exceeded use ofother robust emergent plant communities. In light ofthese findings, we make recommendations for futureresearch.  相似文献   

2.
Bioassays of nutrient limitation in a tropical rain forest soil   总被引:4,自引:0,他引:4  
Summary Six speices of shrubs and one large herb with contrasting life history patterns were used as bioassays of nutrient availability in a Costa Rican lowland rain forest soil. Growth responses of the herb (Phytolacca rivinoides, Phytolaccaceae) confirmed soil measurements indicating high availability of N and potentially limiting levels of P, K, Mg and Ca. Growth responses of the shrub species (Miconia spp., Melastomataceae and Piper spp., Piperaceae) to a complete nutrient fertilizer were generally less than that of Phytolacca. Lack of a strong shrub response to +P fertilization is probably due to mycorrhizal associations and slower growth rates of woody species. In general, increased growth did not occur at the expense of phenolic production in the leaves. The results emphasize that assessment of specific nutrient limitations to plant growth vary depending on species selected for the bioassay, even among species from the same community.  相似文献   

3.
Seedlings of nine southern Chilean trees were grown at three nutrient supply rates, to examine the roles of growth rate, biomass distribution and nutrient use traits in determining species natural distributions on resource gradients. Relative growth rate (RGR) showed no overall relationship with species site requirements, although RGR of fertile-site species tended to be more responsive to nutrient supply. In the low-nutrient treatment, infertility-tolerant Fitzroya cupressoides showed a higher RGR rank than a fertility-demanding species (Laurelia philippiana) which outgrew it substantially at the highest supply rate. This reversal of RGR ranks was associated with divergent nutrient use responses: at high nutrient supply both spp. had similar plant nitrogen concentrations (PNC), whereas at the low supply rate Fitzroya’s production of biomass per unit of assimilated N was twice that of Laurelia’s. However, this pattern does not appear to serve as a general explanation of the respective distributions of the study species, as RGR ranks of most species were unaltered by nutrient supply. At low nutrient availability, no clear differences in shoot:root ratio (SRR) were apparent between poor-site and fertile-site species. However, at high nutrient availability, SRR was markedly higher in the latter, resulting from differences in biomass allocation to stems (not leaves). Leaf area ratios (LAR) were higher in fertile-site species than in those tolerant of low fertility, because of differences in specific leaf area rather than leaf weight ratio. Very high LAR at high nutrient supply was characteristic of most shade-tolerant angiosperms, but not of shade-tolerant conifers. Although PNC showed no overall differences between poor- and fertile-site species, sensitivity of PNC to external supply rate was greatest in two infertility-tolerant conifers. In contrast, the angiosperm Weinmannia trichosperma, although tolerant of low fertility, responded to increased nutrient supply with greatly increased RGR and little change in PNC. Results show little trait convergence between conifers and angiosperms in adaptation both to shade and to infertile soils; i.e. fitness of different taxa in a given environment may hinge on different trait combinations. Received: 12 September 1995 /Accepted: 14 June 1996  相似文献   

4.
The root morphology of ten temperate pasture species (four annual grasses, four perennial grasses and two annual dicots) was compared and their responses to P and N deficiency were characterised. Root morphologies differed markedly; some species had relatively fine and extensive root systems (Vulpia spp., Holcus lanatus L. and Lolium rigidum Gaudin), whilst others had relatively thick and small root systems (Trifolium subterraneum L. and Phalaris aquatica L.). Most species increased the proportion of dry matter allocated to the root system at low P and N, compared with that at optimal nutrient supply. Most species also decreased root diameter and increased specific root length in response to P deficiency. Only some of the species responded to N deficiency in this way. Root morphology was important for the acquisition of P, a nutrient for which supply to the plant depends on root exploration of soil and on diffusion to the root surface. Species with fine, extensive root systems had low external P requirements for maximum growth and those with thick, small root systems generally had high external P requirements. These intrinsic root characteristics were more important determinants of P requirement than changes in root morphology in response to P deficiency. Species with different N requirements could not be distinguished clearly by their root morphological attributes or their response to N deficiency, presumably because mass flow is relatively more important for N supply to roots in soil.Section editor: H. Lambers  相似文献   

5.
Summary In a phytotron study of the effects of nitrogen and phosphorus supply ratio on nutrient uptake and use by Larrea tridentata, seedlings responded to increases in N and P availability with increases in leaf size, total biomass, and leaf nutrient concentration, and with decreases in root: shoot ratio. N and P use efficiency decreased with increasing N and P availability, respectively, but increased with increasing availability of the other nutrient, suggesting that Larrea responds both to the absolute and to the relative availability of limiting nutrients. Absolute amounts of N and P resorption, as well as N and P resorption efficiencies did not demonstrate a significant trend with nutrient availability, and there was no evidence of significant interactions between the two nutrients. More studies of the effects of nutrient interactions in the cycling and use of nutrients by different plant species are needed before more general conclusions can be drawn.  相似文献   

6.
Common reed (Phragmites australis) and reed canarygrass (Phalaris arundinacea) are two most commonly used plant species in constructed wetlands for wastewater treatment in the Czech Republic. Growth characteristics of both plants (biomass, stem count, and length) have been measured in 13 horizontal sub-surface flow constructed wetlands since 1992. The results revealed that while Phalaris usually reaches its maximum biomass as early as during the second growing season, Phragmites usually reaches its maximum only after three to four growing seasons. The maximum biomass of both species varies widely among systems and the highest measured values (5070 g m−2 for Phragmites and 1900 g m−2 for Phalaris) are similar to those found in eutrophic natural stands. The shoot count of Phragmites decreases after the second growing season while length and weight of individual shoots increases over time due to self-thinning process. Number of Phalaris shoots is the highest during the second season and then the shoot count remains about the same. Also the shoot length remains steady over years of constructed wetland operation.  相似文献   

7.
Levizou  E.  Manetas  Y. 《Plant Ecology》2001,154(1-2):179-186
Seedlings of two Mediterranean plants, the slow-growing, evergreen sclerophyll Ceratonia siliqua L. and the fast growing drought semi-deciduous Phlomis fruticosa L., were grown for one year in the field at ambient or ambient plus supplemental UV-B radiation (equivalent to a 15% ozone depletion) and two levels of applied fertilizers (NPK). The effects on growth, morphological, anatomical and physiological parameters were measured at final plant harvest. Additional nutrients increased leaf nitrogen, improved growth and reduced the root/shoot ratio in both plants, yet these effects were more pronounced in the fast growing P. fruticosa. A nutrient-induced increase in chlorophyll content was also observed in this plant. The growth responses to UV-B radiation were different for the two species. Growth in C. siliqua was not affected by UV-B radiation at both nutrient levels and the same was true for P. fruticosa at low nutrients. However, at the high nutrient level, supplemental UV-B radiation improved growth in P. fruticosa, indicating a strong interaction between the treatments. Photosystem II (PSII) photochemical efficiency, methanol-extractable UV-B absorbing capacity, total phenolics and tannins were not affected by either treatment in both plants. It is concluded that nutrient levels can strongly modify the UV-B radiation effects on growth of P. fruticosa. We presume that this may be correlated to the fast growing habit of this species.  相似文献   

8.
重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征   总被引:5,自引:0,他引:5  
刘宏伟  刘文丹  王微  柴捷  陶建平 《生态学报》2015,35(12):4071-4080
以重庆石灰岩地区15种常绿木本植物和14种落叶木本植物为研究对象,对两种生活型植物叶片衰老前后叶干物质含量(LDMC)、比叶面积(SLA)和叶片厚度(LT)进行了比较,并采用不同的计算方法(单位质量叶片养分含量、单位面积叶片养分含量)分析了两类植物叶片衰老前后养分含量及再吸收特征,最后对养分再吸收效率与其他叶性状因子之间的关系进行了相关分析。结果表明:常绿植物成熟叶LDMC、LT及衰老叶LT显著低于落叶植物,落叶植物成熟叶和衰老叶SLA均显著高于常绿植物(P0.05);基于单位质量叶片计算的养分含量,常绿植物成熟和衰老叶N、P量均低于落叶植物,而基于单位面积叶片计算的N、P含量则表现出相反的趋势;基于不同方法计算的N、P再吸收效率差异不明显,其中常绿植物基于单位质量叶片养分含量计算的N、P平均再吸收效率为39.42%、43.79%,落叶植物的为24.08%、33.59%;常绿和落叶植物N、P再吸收效率与LDMC、SLA、LT和成熟叶N、P含量之间没有显著相关性,但与衰老叶养分含量存在显著负相关(P0.05)。研究发现,无论是常绿植物还是落叶植物,衰老叶N、P含量均较低,表明石灰岩地区植物具有较高的养分再吸收程度。  相似文献   

9.
We compared root proliferation in fertilized microsites among seven cultivars of five commonly planted cool-desert perennial grass species that differ in productivity and competitive ability. In a greenhouse experiment on nutrient-limited plants, one soil microsite in each pot received distilled water (control) and a second microsite received a rich, complete nutrient solution (fertilized). Roots in and adjacent to the microsites were mapped on Mylar windows for 22 days after the injections to determine the magnitude and timing of response in root length relative growth rates (RGRs). Because we provided adequate water, used a high level of fertilization in the treatment microsites, and conducted the experiments during rapid vegetative growth, the results provide a measure of the relative capacities and maximal rates of the grasses responses to enriched microsites. Root samples were harvested from control and fertilized microsites at the end of the experiment to determine the morphological basis of the proliferation response. In all seven grasses fine roots proliferated in the fertilized microsites faster than in the control microsites. The grasses did not differ in the timing of their response which showed a peak 7–8 days after injection. Although one species, Pseudoroegneria spicata cv. Goldar, had higher maximum root length RGR and higher RGR ratio (RGR in fertilized to RGR in control microsites) 7–8 days after injection, the seven grasses did not differ significantly in the magnitude of root length RGR response to fertilizer integrated over the 22 day experiment. The grasses also did not differ significantly in root morphological changes in fertilized mocrosites. Compared to roots in control microsites, roots in fertilized microsites had greater specific root length, length of secondary roots per length of main axis, number of lateral and sublateral roots per length of main axis, and mean lateral root length. Root proliferation was mainly the result of increased lateral branching and lateral root growth in all seven grasses. The consistency of root proliferation responses among these seven cultivars suggests that differences in the capacity for, maximum rate, or morphological basis of root proliferation are not directly related to ecological characteristics such as productivity and competitive ability. Other aspects of root response to nutrient enrichment, such as differential responses as a function of microsite nutrient concentration, plant phenology, plant nutrient status, or specific nutrient element(s), may still be important, but further experiments are required to determine whether different responses to enriched soil microsites among species correspond with know species differences in ecological characteristics.  相似文献   

10.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   

11.
分别对9年生与13年生刨花楠林木叶片氮磷养分之间关系及林木生物量相对生长速率与叶片碳氮磷化学计量比关系进行分析,探讨不同相对生长速率下的林木叶片N、P养分适应特征,并检验相对生长速率假说理论对刨花楠树种的适应性。结果表明:两种年龄刨花楠林木生物量相对生长速率、叶片C、N、P含量及其计量比值均存在显著差异;同一年龄的林木叶片N、P之间存在显著相关性,二者具有协同相关性;9年生林木叶片P含量及C∶P、N∶P与生物量相对生长速率呈二次曲线相关,而13年生林木叶片N、P含量及C∶N、C∶P、N∶P则与生物量相对生长速率均呈线性相关。研究表明,在能满足植物生长所需养分供给的土壤环境中,叶片N、P含量与林木相对生长速率间呈线性正相关,但当土壤中养分供应满足不了植物高速生长时,植物则会对有限的养分资源进行适应性调整。  相似文献   

12.
Seven annual-perennial pairs of grass species (six congeneric and one pair taken at random) were grown under productive conditions in the laboratory in order to investigate which plant characters were responsible for the higher relative growth rate (RGR) of annuals as compared to perennials under these conditions. The nitrogen and carbon concentrations of shoot organs and of the whole plant were higher in annuals than in perennials. This was also the case for the specific absorption rate for nitrate and nitrogen productivity (on whole plant and leaf basis). The range of RGR displayed by the 14 species was large enough (0.15–0.33d−1) to examine the general relationships between RGR and the various parameters measured in the present study. RGR was positively related to plant, leaf blade and sheath nitrogen concentrations, but there was no relationship between RGR and any of the carbon concentrations. RGR also strongly correlated with specific absorption rate for nitrate and with nitrogen productivity. A new factorization of this latter parameter led to the definition of the ‘leaf nitrogen productivity’ (NLP), which is likely to depend on photosynthetic nitrogen use efficiency. RGR was shown to be strongly correlated with NLP, but not with the second term of the factorization, namely the proportion of plant nitrogen allocated to the leaves.  相似文献   

13.
Although Phragmites has been an upper border tidal marsh species for thousands of years, it is only recently (within the last century or so) that the distribution of this plant within the coastal marsh community has become prominent. Prior to approximately 100 years ago, Phragmites was an upper border/brackish marsh co-dominant in many marsh systems. Occurrence of this species varied between associations of sedges, Typha, forbs and a variety of woody shrubs. Paleoreconstructions rarely show the presence of a Phragmites monoculture or early associations with salt marsh species. However, since the turn of this century (and perhaps as early as the middle of the last century) the distribution of Phragmites has changed substantially. Today, this plant often forms dense monocultures and is commonly found in association with Spartina grasses. The results of this paleoecological investigation show that the changes that have been observed in Phragmites communities during the last 100 years are not part of the long-term cycle of development in these systems and are new to the landscape.  相似文献   

14.
Summary Growth responses and accumulation of N and P were studied in two pygmy south-west Australian species of Drosera following supplementary feeding of arthropods (collembolans, Hypogastrura vernalis and fruit flies, Drosophila melanogaster) and/or a balanced mineral nutrient supplement (N as nitrate) via the roots. One feeding experiment used glasshouse-raised germlings from vegetative propagules (gemmae) of the perennial Drosera closterostigma, the other three (two on D. closterostigma and one on the annual D. glanduligera) involved natural populations engaging in natural captures of indigenous prey. All experiments recorded highly significant increases in plant dry matter, N and P (all plant age groups) and in reproductive performance (adult plants only) from artificial feeding of arthropods, but no apparent benefits from minerals alone or additive effects of minerals above that due to insects. Unresponsiveness to mineral nutrients was suggested to relate to inability of the species to use nitrate, while up to three-fold growth and nutrient uptake response to insects indicated that growth of natural populations might be severely limited by inadequate catches of prey. It is concluded that the highly nutrient-poor conditions typical of the habitat of pygmy species of Drosera may have promoted marked specialization towards carnivory and an attendant decline in ability to utilize soil-derived sources of nutrients.  相似文献   

15.
Abstract Nutrient resorption from senescing leaves enables plants to conserve and reuse nutrients. As such, it could be expected that plant species adapted to infertile soils have a higher nutrient resorption efficiency (percentage reduction of nutrients between green and senesced leaves) and/or higher nutrient resorption proficiency (absolute reduction of nutrients in senesced leaves) than those adapted to fertile soils. Our objective was to compare nitrogen (N) and phosphorous (P) resorption of two congener grasses that successfully occupy uplands of relatively low fertility (Stipa gynerioides) or lowlands of relatively high fertility (Stipa brachychaeta) in natural grasslands of central Argentina. The two Stipa species did not differ in N and P resorption efficiency, but S. gynerioides had a higher N and P resorption proficiency than S. brachychaeta. As a consequence, leaf‐level N and P use efficiency were higher in the species adapted to low fertility conditions than in the species adapted to high fertility conditions. The higher nutrient resorption proficiency of S. gynerioides was also associated with relatively low leaf‐litter decomposition and nutrient release rates found in a previous study.  相似文献   

16.
Concern about colonization of marshesby plant species such as Phragmites australisand Lythrum salicariahas highlighted the needfor management strategies. However, there is a lack ofinformation in the literature on which to base thesedecisions. This study compares the alpha diversity ofmarshes to assess the impact of invasion by Phragmitesand Lythrum. Species occurrence andstem density were measured in marshes dominated by Phragmites, Lythrum, Typhaspp., or otherherbaceous perennials in the Charles River watershedin eastern Massachusetts, USA, and species richness,Shannon's H, Simpson's reciprocal (1/D), and Pielou'sJ were compared among six community types. The threediversity indices had significantly higher values forTypha-Lythrummarshes than for any of the othermarsh types (Tukey test, p< 0.05), with mean values(± s.d.) of H = 2.00 ± 0.74, 1/D = 3.51± 1.68 and J = 0.69 ± 0.1. Marshes dominatedby Phragmiteshad the lowest diversity, with H= 0 and D = 1, i.e. they were monospecific. Typhadominated marshes had the second lowest values,with H = 0.17 ± 0.05, 1/D = 1.05 ± 0.01, andJ = 0.11 ± 0.03. These results support the ideathat a reduction in diversity can be expected inmarshes colonized by Phragmites. However, thehigh diversity found in the Typha-Lythrummarshes contradicts the expectation of lower diversityafter invasion by Lythrum. This information mayalter marsh management decisions.  相似文献   

17.
To reveal the environmental and substrate quality effects on decomposition process and enzyme activities, litterbag experiments containing Nuphar and Carex leaves, Nuphar rhizome, and Ranunculus shoot, were carried in five-subalpine marshes in Lake Tahoe basin, USA. Alkaline phosphatase, β-glucosidase, and β-xylosidase activities were determined by a fluorogenic method using methyumbelliferyl substrates. Carex leaves, Nuphar rhizome and leaves, and Ranunculus shoots lost, respectively, 33, 67, 82 and 93% of original dry weight over 268 days. Decay rates were different among substrates but not among marshes. Nitrogen and carbon contents increased during the first 58 days and subsequently remained stable. Phosphorus content was stable during the experimental period except for a decrease in the first 16 days in Nuphar shoots. Enzyme activities in decomposing Carex and Nuphar leaves in four marshes were not significantly affected by environmental conditions. β-glucosidase and β-xylosidase activities in decomposing Carex leaves increased with time, but in other plant tissue these enzyme activities remained stable during experimental period. Enzyme activities were significantly different among decomposing substrates. Alkaline phosphatase activity was highest in Nuphar leaves (ca. 1286 μ-mole h−1 g DW −1) but lower and similar in other plant tissues (ca. 100 and 10 μ-mole h −1 g DW −1, respectively). This study showed differences in decay rates and enzyme activities rely on substrate and not the environment conditions of the study area. Decomposition rates in the early stage of decomposition were related to cumulative enzyme activities.  相似文献   

18.
Gill RA  Boie JA  Bishop JG  Larsen L  Apple JL  Evans RD 《Oecologia》2006,148(2):312-324
In the two decades following the 1980 eruption of Mount St. Helens in Washington State, the N2-fixing colonizer Lupinus lepidus is associated with striking heterogeneity in plant community and soil development. We report on differences in nutrient availability and plant tissue chemistry between older, dense patches (core) of L. lepidus and more recently established low density patches (edge). In addition, we conducted a factorial nitrogen and phosphorus fertilization experiment in core patches to examine the degree of N and P limitation in early primary succession. We found that there were no significant differences in N or P availability between core and edge L. lepidus patches during the dry summer months, although nutrient availability is very low across the landscape. In the high density patches we found lower tissue N content and higher fiber content in L. lepidus tissue than in the younger edge patches. The addition of nutrients substantially altered plant community composition, with N addition causing an increase in other forb biomass and a corresponding competition-induced decline in L. lepidus biomass. The majority of the positive biomass response came from Hypochaeris radicata. In the second year of the fertilization experiment, the addition of N significantly increased total community biomass while L. lepidus biomass declined by more than 50%. The response of every species other than L. lepidus to N additions suggests that N may be the macronutrient most limiting plant production on Mount St. Helens but that the gains in productivity were somewhat offset by a decline of the dominant species. By the third year of the experiment, L. lepidus began to increase in abundance with P addition. This result suggests co-limitation of the community by N and P.  相似文献   

19.
Arbuscular mycorrhizas (AM) are the most widespread mycorrhiza in nature and form two morphologies, Arum- and Paris-type. The determining factors defining the two different morphologies are not well understood. In this study, the distribution of Arum- and Paris-type AM was determined in a mixed pine forest. A total of 35 plant species belonging to 20 families and 32 genera were identified and examined for AM colonization and morphological types. AM morphological types in 14 families were confirmed as follows: Arum-type in Rosaceae, Oleaceae, Lauraceae, Vitaceae and Compositae, Paris-type in Aquifoliaceae, Ulmaceae, Araliaceae, Theaceae, Magnoliaceae, Rubiaceae and Dioscoraceae, and both and/or intermediate types in Caprifoliaceae and Gramineae. Plant families whose AM morphological status was previously unknown were clarified as follows: Polygonaceae and Commelinaceae showed Arum-type morphology; Celastraceae, Menispermaceae and Elaeagnaceae had typical Paris-type morphology. The proportion of Arum-type to Paris-type species decreased in the following order: annuals > perennials > deciduous species > evergreen species, and pioneer group > early successional group > late successional group. Evergreen plants had a higher tendency to form Paris-type AM than annuals, perennials and deciduous plants. The results indicate that environmental changes, such as shade during plant succession, control the distribution of plant growth forms in mixed pine forest and may also play a part in the distribution of Arum- and Paris-type morphology. The identity of the plant seems to strongly influence AM morphology, though control by the fungal genome cannot be ruled out.  相似文献   

20.
The Resource Availability Hypothesis (RAH) states that plants with a low Relative Growth Rate (RGR) and high levels of defence against herbivores or pathogens are favoured in habitats with low resource availability, whereas plants with a high potential RGR and low levels of defence are favoured in environments with high resource availability. High levels of defence are expected to result in lower reproduction and/or growth of the herbivores or pathogens. To test this hypothesis, four accessions of each of nine natural Hordeum spontaneum (wild barley) populations were grown in a climate chamber under two levels of nutrient supply. Susceptibility to Schizaphis graminum (greenbug) was quantified by placing a single adult greenbug on each plant and measuring its realised fecundity after 8 days. Data on potential RGR were available from a previous experiment. No support for the RAH was found. The correlation between potential RGR and greenbug reproduction was not significant, neither at the high nor at the low level of nutrient supply. Furthermore, on average plants grown under high and low nutrients did not differ in susceptibility. However, accessions-within-populations differed in the way susceptibility was affected by nutrient supply, and most accessions had a higher susceptibility under nutrient-poor conditions. It could be that these accessions differed in the spectrum of secondary metabolites they produced. Whatever the cause, the genetic variation for the reaction in susceptibility to nutrient supply suggests that selection could act in favour of more or less plasticity in plants without any apparent change in potential RGR.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号