首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to determine if rat articular chondrocytes express caveolin, the structural protein of caveolae, and to determine differences in the distribution of the caveolin subtypes 1, 2 and 3 in knee joints of newborn and adult rats. All three subtypes of caveolin were detected in adult cartilage by immunocytochemical staining. In newborn rats, only caveolin-1 was found in the hyaline cartilage. Caveolin-1, -2 and -3 messenger RNA and protein were also detected in chondrocyte cell cultures. Ultrastructural investigations of cell culture and cartilage tissue revealed the presence of caveolae at the plasma membrane of chondrocytes. These findings represent the first report on the different expression of caveolin isoforms, in particular the expression of the muscle cell-specific caveolin-3 in chondrocytes. There is evidence that caveolin-2 and -3 are upregulated during growth and development of articular cartilage, suggesting a role for caveolins in chondrocyte differentiation. Accepted: 4 May 1999  相似文献   

2.
Caveolin-3, the major caveolin isoform in cardiomyocytes, plays an important role in the rapid signaling pathways initiated by stimulation of the membrane-associated molecules. To examine the role of caveolin-3 in regulating estrogen receptor α in cardiomyocytes, we investigate whether the membrane estrogen receptor α associates with caveolin-3 and whether this association is linked to the 17β-estradiol-mediated signals. In control cardiomyocytes, following discontinuous sucrose gradient centrifugation, caveolin-3 was found predominantly in the lipid raft buoyant fractions, whereas it was distributed to both the buoyant and non-lipid raft heavy fractions following metabolic inhibition treatment. Confocal microscopy showed that estrogen receptor α co-localized with caveolin-3 on the plasma membrane of neonatal and adult rat cardiomyocytes. This membrane labeling of estrogen receptor α was not seen following treatment with the cholesterol-depleting agent methyl-β-cyclodextrin (5 mM), whereas metabolic inhibition had little effect on the membrane distribution of estrogen receptor α. Metabolic inhibition induced tyrosine phosphorylation of caveolin-3 and decreased its association with estrogen receptor α, both effects being mediated via a Src activation mechanism, since they were inhibited by the selective tyrosine kinase inhibitor PP2. Metabolic inhibition also induced tyrosine phosphorylation of connexin43 and increased its association with c-Src, both effects being prevented by 17β-estradiol (200 nM). The effect of 17β-estradiol on metabolic inhibition-induced tyrosine phosphorylation of connexin43 was inhibited by the specific estrogen receptor antagonist ICI182780. These data identify cardiac caveolin-3 as juxtamembrane scaffolding for estrogen receptor α docking at caveolae, which provide a unique compartment for conveying 17β-estradiol-elicited, rapid signaling to regulate connexin43 phosphorylation during ischemia.  相似文献   

3.
4.
Caveolin-1 is a scaffolding protein component of caveolae, membrane invaginations involved in endocytosis, signal transduction, trans- and intracellular trafficking, and protein sorting. In adult lung, caveolae and caveolin-1 are present in alveolar endothelium and Type I epithelial cells but rarely in Type II cells. We have analyzed patterns of caveolin-1 expression during mouse lung development. Two caveolin-1 mRNAs, full-length and a 5' variant that will translate mainly into caveolin-1alpha and -beta isoforms, are detected by RT-PCR at embryonic day 12 (E12) and afterwards in the developing and adult lung. Immunostaining analysis, starting at E10, shows caveolin-1alpha localized in primitive blood vessels of the forming lung, in an overlapping pattern to the endothelial marker PECAM-1, and later in all blood vessels. Caveolin-1alpha is not detected in fetal or neonatal lung epithelium but is detected in adult epithelial Type I cells. Caveolin-1 was previously shown to be expressed in alveolar Type I cells. These data suggest that expression of caveolin-1 isoforms is differentially regulated in endothelial and epithelial cells during lung development. Caveolin-1alpha is an early marker for lung vasculogenesis, primarily expressed in developing blood vessels. When the lung is fully differentiated postnatally, caveolin-1alpha is also expressed in alveolar Type I cells.  相似文献   

5.
Caveolae and caveolins, structural components of caveolae, are associated with specific ion channels in cardiac myocytes. We have previously shown that P2X purinoceptor 7 (P2X7R), a ligand-gated ion channel, is increased in atrial cardiomyocytes of caveolin-1 knockout mice; however, the specific biochemical relationship of P2X7R with caveolins in the heart is not clear. The aim of this work was to study the presence of the P2X7R in atrial cardiomyocytes and its biochemical relationship to caveolin-1 and caveolin-3. Caveolin isoforms and P2X7R were predominantly localized in buoyant membrane fractions (lipid rafts/caveolae) prepared from hearts using detergent-free sucrose gradient centrifugation. Caveolin-1 knockout mice showed normal distribution of caveolin-3 and P2X7R to buoyant membranes indicating the importance of caveolin-3 to formation of caveolae. Using clear native-PAGE, we showed that caveolin-1, -3 and P2X7R contribute to the same protein complex in the membranes of murine cardiomyocytes and in the immortal cardiomyocyte cell line HL-1. Western blot analysis revealed increased caveolin-1 and -3 proteins in tissue homogenates of P2X7R knockout mice. Finally, tissue homogenates of atrial tissues from caveolin-3 knockout mice showed elevated mRNA for P2X7R in atria. The colocalization of caveolins with P2X7R in a biochemical complex and compensated upregulation of P2X7R or caveolins in the absence of any component of the complex suggests P2X7R and caveolins may serve an important regulatory control point for disease pathology in the heart.  相似文献   

6.
The localization of caveolins in the sinus endothelial cells of the rat spleen has been demonstrated by confocal laser scanning and electron microscopy. Caveolin-3, a muscle-specific caveolin, was detected by Western blot analysis and immunofluorescence microscopy of isolated sinus endothelial cells and tissue cryosections of the spleen. During the immunofluorescence microscopy of isolated endothelial cells, both caveolin-3 and caveolin-1 were found. In tissue cryosections of the spleen, caveolin-3, as well as caveolin-1 and -2, was present in the contours and cytoplasm of the cells. Immunogold electron microscopy of tissue cryosections revealed caveolin-3, -1, and -2 to be present in caveolae in the apical, lateral, and basal plasma membranes and some vesicular profiles in the cytoplasm of sinus endothelial cells. Furthermore, caveolin-3 was colocalized with caveolin-1 in the same caveolae in the apical, lateral, and basal plasma membranes. Stress fibers and tubulovesicular structures were situated in the vicinity of caveolae labeled with anti-caveolin-3, anti-caveolin-1, and anti-caveolin-2 antibodies. It is speculated that caveolae in sinus endothelial cells play an important role in the constriction of stress fibers.  相似文献   

7.
It is generally well accepted that caveolin-3 expression is muscle specific, whereas caveolin-1 and -2 are coexpressed in a variety of cell types, including adipocytes, endothelial cells, epithelial cells, and fibroblasts. Caveolin-1 and -2 are known to form functional hetero-oligomeric complexes in cells where they are coexpressed, whereas caveolin-3 forms homo-oligomeric high molecular mass complexes. Although caveolin-2 might be expected to interact in a similar manner with caveolin-3, most studies indicate that this is not the case. However, this view has recently been challenged as it has been demonstrated that caveolin-2 and -3 are coexpressed in primary cultures of cardiac myocytes, where these two proteins can be coimmunoprecipitated. Thus it remains controversial whether caveolin-2 interacts with caveolin-3. Here, we directly address the issue of caveolin isoform protein-protein interactions by means of three distinct molecular genetic approaches. First, using caveolin-1-deficient mouse embryonic fibroblasts, in which we have stably expressed caveolin-1, -2, or -3, we find that caveolin-1 interacts with caveolin-2 in this setting, whereas caveolin-3 does not, in agreement with most published observations. Next, we used a transfected L6 myoblast cell system expressing all three caveolin proteins. Surprisingly, we found that caveolin-1, -2, and -3 all coimmunoprecipitate in this cell type, suggesting that this interaction is muscle cell specific. Similar results were obtained when the skeletal muscle of caveolin-1 transgenic animals was analyzed for caveolin-1 and caveolin-3 coimmunoprecipitation. Thus we conclude that all three caveolins can interact to form a discrete hetero-oligomeric complex, but that such complex formation is clearly muscle specific. caveolae; caveolin-1; caveolin-2; caveolin-3  相似文献   

8.
Vascular endothelial growth factor receptor-3 (VEGFR-3) is constitutively expressed in lymphatic vessels and transiently in endothelial cells of blood vessels during angiogenesis. Here we report that VEGFR-3 localizes in the caveolae membrane of endothelial cells and co-immunoprecipitates with caveolin-1. Caveolin-1 silencing or its depletion from the cell membrane by cholesterol increases VEGFR-3 autophosphorylation, suggesting that caveolin acts as a negative regulator of VEGFR-3 activity. Receptor activation induces caveolin-1 phosphorylation on tyrosine residues including tyrosine 14. Cell treatment with Src or Abl inhibitors PP2 or STI571, prior to receptor stimulation, affects caveolin-1 phosphorylation without affecting receptor autophosphorylation, suggesting that both Src and Abl are involved in VEGFR-3-dependent caveolin-1 phosphorylation. Caveolin-1 phosphorylation in Src/Fyn/Yes knockout cells demonstrated that Abl phosphorylates caveolin-1 independently from Src family members. These results suggest a functional interaction between VEGFR-3 and caveolin-1 to modulate endothelial cell activation during angiogenesis.  相似文献   

9.
Evidence for caveolin expression in macrophages is scarce and conflicting. We therefore examined caveolin-1 and caveolin-2 expression in resident and thioglycollate-elicited mouse peritoneal macrophages (tg-MPM) and in the J774 mouse macrophage cell line by RT-PCR, ribonuclease protection assay, immunoblotting, and immunofluorescence. We found that relative to 3T3 cells, resident MPM and tg-MPM express low amounts of caveolin-1 (45 and 15% of those in 3T3 fibroblasts, respectively), while J774.A1 cells do not express any. Caveolin-2, on the other hand, is expressed in all cells examined, with highest expression in tg-MPM and the lowest in J774 cells. The relative levels of caveolin expression in the various cells correspond well with their respective mRNA levels, as measured by ribonuclease protection assay. Caveolin-1, present primarily on the cell surface, does not co-localize significantly with caveolin-2, which is present primarily in the Golgi compartment in all macrophages studied. Loading of tg-MPM with cholesterol or variations in unesterified cholesterol content appear to have little effect on the level of caveolin-1 or -2 expression or their distribution. Stimulation of cholesterol efflux by HDL(3) leads to caveolin-1 and caveolin-2 secretion to the cell culture medium, a process not detected in the absence of HDL(3). The lack of significant co-localization of the two caveolin isoforms in primary macrophages and their secretion in the presence of HDL(3) provides an interesting and physiologically relevant model system to study additional aspects of caveolin function.  相似文献   

10.
Caveolins have been identified as key components of caveolae, specialized cholesterol-enriched raft domains visible as small flask-shaped invaginations of the plasma membrane. In polarized MDCK cells caveolin-1 and -2 are found together on basolateral caveolae whereas the apical membrane, where only caveolin-1 is present, lacks caveolae. Expression of a caveolin mutant prevented the formation of the large caveolin-1/-2 hetero-oligomeric complexes, and led to intracellular retention of caveolin-2 and disappearance of caveolae from the basolateral membrane. Correspondingly, in MDCK cells over-expressing caveolin-2 the basolateral membrane exhibited an increased number of caveolae. These results indicate the involvement of caveolin-2 in caveolar biogenesis.  相似文献   

11.
12.
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cell types (cardiac and skeletal). Autosomal dominant limb girdle muscular dystrophy (LGMD-1C) in humans is due to mutations within the caveolin-3 gene: (i) a 9-base pair microdeletion that removes three amino acids within the caveolin scaffolding domain (DeltaTFT) or (ii) a missense mutation within the membrane spanning domain (P --> L). The molecular mechanisms by which these two mutations cause muscular dystrophy remain unknown. Here, we investigate the phenotypic behavior of these caveolin-3 mutations using heterologous expression. Wild type caveolin-3 or caveolin-3 mutants were transiently expressed in NIH 3T3 cells. LGMD-1C mutants of caveolin-3 (DeltaTFT or P --> L) were primarily retained at the level of a perinuclear compartment that we identified as the Golgi complex in double-labeling experiments, while wild type caveolin-3 was efficiently targeted to the plasma membrane. In accordance with these observations, caveolin-3 mutants formed oligomers of a much larger size than wild type caveolin-3 and were excluded from caveolae-enriched membrane fractions as seen by sucrose density gradient centrifugation. In addition, these caveolin-3 mutants were expressed at significantly lower levels and had a dramatically shortened half-life of approximately 45-60 min. However, caveolin-3 mutants were palmitoylated to the same extent as wild type caveolin-3, indicating that targeting to the plasma membrane is not required for palmitoylation of caveolin-3. In conclusion, we show that LGMD-1C mutations lead to formation of unstable high molecular mass aggregates of caveolin-3 that are retained within the Golgi complex and are not targeted to the plasma membrane. Consistent with its autosomal dominant form of genetic transmission, we demonstrate that LGMD-1C mutants of caveolin-3 behave in a dominant-negative fashion, causing the retention of wild type caveolin-3 at the level of the Golgi. These data provide a molecular explanation for why caveolin-3 levels are down-regulated in patients with this form of limb girdle muscular dystrophy (LGMD-1C).  相似文献   

13.
Caveolae are 50- to 100-nm invaginations of the plasma membrane. Caveolins are the structural protein components of caveolar membranes. The caveolin gene family is composed of three members: caveolin-1, caveolin-2, and caveolin-3. Caveolin-1 and caveolin-2 are coexpressed in many cell types, including adipocytes, endothelial cells, epithelial cells, and fibroblasts. In contrast, caveolin-3 expression is essentially restricted to skeletal and smooth muscle cells as well as cardiac myocytes. While the interaction between caveolin-1 and caveolin-2 has been documented previously, the reciprocal interaction between endogenous caveolin-1 and caveolin-3 and their functional role in cell types expressing both isoforms have yet to be identified. Here we demonstrate for the first time that caveolin-1 and caveolin-3 are coexpressed in mouse and rat cardiac myocytes of the atria but not ventricles. We also found that caveolin-1 and caveolin-3 can interact and form heterooligomeric complexes in this cell type. Doxorubicin is an effective anticancer agent, but its use is limited by the possible development of cardiotoxicity. Using caveolin-1- and caveolin-3-null mice, we show that both caveolin-1 and caveolin-3 expression are required for doxorubicin-induced apoptosis in the atria through activation of caspase 3. Together, these results bring new insight into the functional role of caveolae and suggest that caveolin-1/caveolin-3 heterooligomeric complexes may play a key role in chemotherapy-induced cardiotoxicity in the atria.  相似文献   

14.
Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are small enzymes that are ubiquitous in many organisms. They are important in biological processes such as cell proliferation, adhesion, migration, and invasiveness. LMW-PTP is expressed in mammalian cells as two isoforms (IF1 and IF2) originating through alternative splicing. We have previously shown that IF2 targets lipid rafts called caveolae and interacts with caveolin-1, their major structural protein. Caveolae are cholesterol- and sphingolipid-rich membrane microdomains that have been implicated in a variety of cellular functions, including signal transduction events. Caveolin-1 contains a scaffolding region that contributes to the binding of the protein to the plasma membrane and mediates protein omo- and etero-oligomerization. Interaction of many signaling molecules with the scaffolding domain sequesters them into caveolae and inhibits or suppresses their activities. Caveolin-interacting proteins usually have a typical sequence motif, also present in all the LMW-PTPs, which is characterized by aromatic or large hydrophobic residues in specific positions. We have examined here the interaction of the LMW-PTP isoforms with caveolin-1 and its molecular mechanism, together with the consequences for their tyrosine phosphatase activities. We found that IF1 and IF2 are both capable of interacting with defined regions of caveolin-1 and that their putative caveolin binding sequence motif is not responsible for the association. The formation of LMW-PTP/caveolin-1 complexes is accompanied by modulation of the enzyme activities, and the inhibitory effect elicited against IF1 is stronger than that against IF2. The caveolin scaffolding domain is directly involved in the observed phenomena.  相似文献   

15.
BALB/3T3 cells were transformed by transfection with DNA encoding the mutated ras(Q(61)K) from shrimp Penaeus japonicus (Huang and Chuang. 1999. J Exp Zool 283:510-521). The caveolin-1 in the membrane fraction extractable with 2% octyl glucoside was significant reduced, compared to untransformed cells. To understand this in more detail, the interaction of S-Ras with caveolin was investigated using caveolin-1 purified from rat lungs. The purified caveolin-1 binds c-Src, suppressing its autophosphorylation. It also binds to phosphatidylserine-cholesterol liposomes. These reconstituted caveolin-phosphatidylserine-cholesterol vesicles, which act as a model of caveolae, recruit both bacterially expressed S-Ras and rat K(B)-Ras proteins, as demonstrated on western blots with antibodies against caveolin-1 and Ras. Caveolin-1 suppressed the intrinsic GTPase activity of S-Ras, sustaining it in the active GTP bound form. By contrast, caveolin-1 enhanced the intrinsic GTPase activity of K(B)-Ras, to convert it into the inactive GDP-bound form. These events suggest that caveolin may act as a docking site for Ras proteins and may be able to either maintain or alter their activity state. These events may be associated with the ability of S-ras(Q(61)K) to successfully transform cells.  相似文献   

16.
Differential modes for beta(1)- and beta(2)-adrenergic receptor (AR) regulation of adenylyl cyclase in cardiomyocytes is most consistent with spatial regulation in microdomains of the plasma membrane. This study examines whether caveolae represent specialized subdomains that concentrate and organize these moieties in cardiomyocytes. Caveolae from quiescent rat ventricular cardiomyocytes are highly enriched in beta(2)-ARs, Galpha(i), protein kinase A RIIalpha subunits, caveolin-3, and flotillins (caveolin functional homologues); beta(1)-ARs, m(2)-muscarinic cholinergic receptors, Galpha(s), and cardiac types V/VI adenylyl cyclase distribute between caveolae and other cell fractions, whereas protein kinase A RIalpha subunits, G protein-coupled receptor kinase-2, and clathrin are largely excluded from caveolae. Cell surface beta(2)-ARs localize to caveolae in cardiomyocytes and cardiac fibroblasts (with markedly different beta(2)-AR expression levels), indicating that the fidelity of beta(2)-AR targeting to caveolae is maintained over a physiologic range of beta(2)-AR expression. In cardiomyocytes, agonist stimulation leads to a marked decline in the abundance of beta(2)-ARs (but not beta(1)-ARs) in caveolae. Other studies show co-immunoprecipitation of cardiomyocytes adenylyl cyclase V/VI and caveolin-3, suggesting their in vivo association. However, caveolin is not required for adenylyl cyclase targeting to low density membranes, since adenylyl cyclase targets to low buoyant density membrane fractions of HEK cells that lack prototypical caveolins. Nevertheless, cholesterol depletion with cyclodextrin augments agonist-stimulated cAMP accumulation, indicating that caveolae function as negative regulators of cAMP accumulation. The inhibitory interaction between caveolae and the cAMP signaling pathway as well as domain-specific differences in the stoichiometry of individual elements in the beta-AR signaling cascade represent important modifiers of cAMP-dependent signaling in the heart.  相似文献   

17.
cav-p60 expression in rat muscle tissues   总被引:1,自引:0,他引:1  
Caveolae are plasmalemmal invaginations of uncertain function. In view of the large number of hypotheses on caveolar functions, it is important to identify which components of caveolae are tissue specific and which are general. The only well-characterized major protein of caveolae is caveolin, which exists in three tissue-specific isoforms: caveolin-1, -2, and -3. Recently cav-p60 was characterized as a 60-kDa caveola-specific protein in adipocytes. The distributions of cav-p60 and caveolin isoforms in different rat muscle tissues were examined by immunofluorescence and immunoelectron microscopy. Cav-p60 was present in caveolae of skeletal and heart muscle, in vascular and intestinal smooth muscle, and in adipocyte caveolae. Furthermore cav-p60 was present in endothelial cells and cells of perineural sheaths. Caveolin-1 and -2 were present in adipocytes, endothelial cells, and cells of perineural sheaths. In all kinds of vascular and intestinal smooth muscle, caveolin-1 and -2 were present at high levels, whereas caveolin-3 expression was low or undetectable, depending on the specific smooth muscle subtype. High levels of caveolin-3 were found only in caveolae and T tubules of skeletal and heart muscle. We conclude that cav-p60 is a highly specific marker of caveolae in many if not all cell types having caveolae.  相似文献   

18.
The caveolin gene family has three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. So far, most caveolin-related research has been conducted in mammals, but the proteins have also been found in other animals, including Xenopus laevis, Fugu rubripes, and Caenorhabditis elegans. Caveolins can serve as protein markers of caveolae ('little caves'), invaginations in the plasma membrane 50-100 nanometers in diameter. Caveolins are found predominantly at the plasma membrane but also in the Golgi, the endoplasmic reticulum, in vesicles, and at cytosolic locations. They are expressed ubiquitously in mammals, but their expression levels vary considerably between tissues. The highest levels of caveolin-1 (also called caveolin, Cav-1 and VIP2I) are found in terminally-differentiated cell types, such as adipocytes, endothelia, smooth muscle cells, and type I pneumocytes. Caveolin-2 (Cav-2) is colocalized and coexpressed with Cav-1 and requires Cav-1 for proper membrane targeting; the Cav-2 gene also maps to the same chromosomal region as Cav-1 (7q31.1 in humans). Caveolin-3 (Cav-3) has greater protein-sequence similarity to Cav-1 than to Cav-2, but it is expressed mainly in muscle cells, including smooth, skeletal, and cardiac myocytes. Caveolins participate in many important cellular processes, including vesicular transport, cholesterol homeostasis, signal transduction, and tumor suppression.  相似文献   

19.
Caveolin-1 is the major structural component of caveolae and is also found in the Golgi complex of many cell types. Occasionally, caveolin-1 has been observed in additional intracellular compartments, including recycling endosomes. Why caveolin-1 expression is detected at these sites only infrequently is not clear. In this study, we test the hypothesis that non-caveolar, non-Golgi pools of caveolin-1 display unique and/or fixation-dependent epitopes. We compared the ability of a panel of antibodies raised against various domains of caveolin-1 to detect distinct subcellular pools of the protein by immunofluorescence microscopy in Madin-Darby canine kidney (MDCK) cells, a cell line where the subcellular localization of caveolin-1 has been extensively characterized. We show that three antibodies directed to the N-terminus of caveolin-1 recognize a previously undetected pool of caveolin-1 in the subapical region of MDCK cells, a localization characteristic of endosomal recycling compartments. The antibodies vary in their ability to label caveolin-1 at the cell surface, and the epitopes detected by each are highly fixation dependent. Our findings suggest that no single caveolin antibody or staining condition is capable of detecting all the caveolin-1 in a cell simultaneously. Consequently, the subcellular distribution of caveolin-1 may be much broader than currently believed.  相似文献   

20.
Caveolae and their coat proteins, caveolins, co-ordinate multiple signaling pathways. Caveolin-3 is a muscle-specific caveolin isoform that is deficient in limb girdle muscular dystrophy type 1 C (LGMD1C). Paradoxically, overexpression of this protein also causes muscle degeneration in vivo. We hypothesize that altered membrane expression of caveolin-3 in muscle cells causes a degenerative phenotype by disrupting the co-ordination of signaling pathways that are critical to the maintenance of cell survival. Here, we show for the first time that, in normal muscle cells subjected to oxidative stress, the phosphatidylinositol (3) kinase (PI(3) kinase)-associated proteins PDK1 and Akt associate with caveolae where they bind to caveolin-3, and that normal activation of this pathway promotes cell survival. Either increased or decreased expression of caveolin-3 at the membrane caused an increased susceptibility to oxidative stress, and myotube survival was markedly improved by PI(3) kinase inhibition. This occurred concomitantly with altered phosphorylation of the pro-apoptotic proteins GSK3beta and Bad, despite normal levels of Akt activation. Taken together, our results demonstrate that altered caveolin-3 expression can change the outcome of PI(3) kinase activation from cell survival to cell death. These findings indicate that normal expression and localization of caveolin-3 are required to appropriately co-ordinate PI(3) kinase/Akt-mediated cell survival signaling, and suggest that this pathway may be an effective therapeutic target for the treatment of muscular dystrophies associated with caveolin-3 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号