首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Lipid accumulation by Gordonia sp. DG using sodium gluconate as carbon source in comparison with Rhodococcus opacus PD630 was studied. Maximum lipid content 80% was observed at the beginning of the stationary phase for R. opacus and 72% at the end of stationary phase for Gordonia sp. Different agro-industrial wastes were used as carbon source. The cells of the two organism accumulated lipid more than 50% of the biomass with most tested agro-industrial wastes. The maximum value was in presence of sugar cane molasses (93 and 96%) for R. opacus and Gordonia sp. respectively. Maximum triacyglycerols (TAGs), 88.9 and 57.8 mg/l, was obtained using carob and orange waste by R. opacus and Gordonia sp. respectively. The use of orange waste as carbon source by R. opacus, increased lipid unsaturation with C18:3 as the major unsaturated fatty acid. On the other hand, C22:0 and C6:0 were the dominant fatty acids (54.5% of the total identified fatty acids) produced by Gordonia sp. in presence of orange waste as carbon source. Statistical optimization of the medium revealed that maximum lipid content was achieved with 60% orange waste, 0.05 g/l ammonium chloride and 0.2 g/l magnesium sulphate.  相似文献   

2.
发酵性丝孢酵母HWZ004利用水稻秸秆水解液发酵产油脂   总被引:3,自引:0,他引:3  
为高效利用水稻秸秆中的纤维素和半纤维素产油脂,采用稀酸预处理和酶水解两步法对水稻秸秆进行水解,然后以水解液为碳源,培养发酵性丝孢酵母Trichosporon fermentans HWZ004产微生物油脂。结果表明,经简单overliming法脱毒后水稻秸秆水解液中乙酸、糠醛和5-羟甲基糠醛的浓度分别为0.4 g/L、0.1 g/L和0.05 g/L。只需添加少量氮源和微量CuSO4?5H2O,该水解液即可满足T. fermentans HWZ004发酵产油脂的要求。发酵最适接种量、初始pH和温度分别是5.0%、7.0和25 ℃。T. fermentans HWZ004在优化条件下培养7 d的生物量、油脂含量和油脂产量分别是26.4 g/L,52.2%和13.8 g/L;油脂得率系数为17.0,大大高于驯化前菌株T. fermentans CICC 1368在脱毒水稻秸秆半纤维素水解液中的对应值 (11.9)。所产油脂的脂肪酸组成与植物油相似,不饱和脂肪酸含量达70%以上,宜作为生物柴油的生产原料。  相似文献   

3.
Rapeseed meal and waste molasses are two important agro-industrial by-products which are produced in large quantities. In this study, solid state fermentation and fungal autolysis were performed to produce rapeseed meal hydrolysate (RMH) using fungal strains of Aspergillus oryzae, Penicillium oxalicum and Neurospora crassa. The hydrolysate was used as fermentation feedstock for heterotrophic growth of microalga Crypthecodinium cohnii that produce docosahexaenoic acid (DHA). The addition of waste molasses as a supplementary carbon source greatly increased the biomass and DHA yield. In the batch fermentations using media composed of diluted RMH (7%) and 1-9% waste molasses, the highest biomass concentration and DHA yield reached 3.43 g/L and 8.72 mg/L, respectively. The algal biomass produced from RMH and molasses medium also had a high percentage of DHA (22-34%) in total fatty acids similar to that of commercial algal biomass. RMH was shown to be rich in nitrogen supply comparable to the commercial nitrogen feedstock like yeast extract. Using RMH as sole nitrogen source, waste molasses excelled other carbon sources and produced the highest concentration of biomass. This study suggests that DHA production of the marine dinoflagellate C. cohnii could be greatly improved by concomitantly using the cheap by-products rapeseed meal hydrolysate and molasses as alternative feedstock.  相似文献   

4.
【目的】研究并建立利用原生质体紫外诱变技术选育可利用廉价碳源发酵的高产油新菌株的方法。【方法】采用1.5%蜗牛酶和1.0%纤维素酶混合液水解去除细胞壁得到2A00015(近平滑假丝酵母,Candida parapsilosis)的原生质体,将其放于紫外灯下诱变及再生壁培养,筛选获得可利用廉价碳源发酵的高产油酵母,并采用气相色谱质谱联用法(GC-MS)测定其脂肪酸组成。【结果】突变效果最好的突变菌株2A00015/25用葡萄糖发酵培养7 d后,其生物量、油脂产率和产油量分别为17.77 g/L、58.12%和10.32 g/L,较原始菌株分别提高了12.45%、23.32%和38.68%;利用废糖蜜发酵培养,其生物量、油脂产率和产油量分别为18.54 g/L、49.44%和9.17 g/L,较原始菌株分别提高了9.09%、21.16%和32.18%。利用废糖蜜培养其产油效率虽低于利用葡萄糖培养,但从环境保护及原材料成本的角度考虑,用废糖蜜作为碳源发酵培养产生油脂更具优势。诱变菌株利用废糖蜜发酵后产生油脂经检测含有8种脂肪酸,其脂肪酸组成与植物油近似,其中不饱和脂肪酸含量占脂肪酸总量的82.4%。【结论】通过利用原生质体紫外诱变技术,成功选育出一株新的可利用廉价碳源的高产油海洋菌株,产油率达到49.4%,提高了21.2%。  相似文献   

5.
Ergosterol is an economically important metabolite produced by fungi. Recombinant Saccharomyces cerevisiae YEH56(pHXA42) with increased capacity of ergosterol formation was constructed by combined overexpression of sterol C-24(28) reductase and sterol acyltransferase in the yeast strain YEH56. The production of ergosterol by this recombinant strain using cane molasses (CM) as an inexpensive carbon source was investigated. An ergosterol content of 52.6 mg/g was obtained with 6.1 g/l of biomass from CM medium containing 60 g/l of total sugar in 30 h in shake flask. The ergosterol yield was enhanced through the increasing cell biomass by supplementation of urea to a concentration of 6 g/l in molasses medium. Fermentation was performed in 5-l bioreactor using the optimized molasses medium. In batch fermentation, the effect of agitation velocity on ergosterol production was examined. The highest ergosterol yield was obtained at 400 rpm that increased 60.4 mg/l in comparison with the shake flask culture. In fed-batch fermentation, yeast cells were cultivated, firstly, in the starting medium containing molasses with 20 g/l of total sugar, 1.68 g/l of phosphate acid, and 6 g/l of urea (pH 5.4) for 5 h, then molasses containing 350 g/l of total sugar was fed exponentially into the bioreactor to keep the ethanol level in the broth below 0.5%. After 40 h of cultivation, the ergosterol yield reached 1,707 mg/l, which was 3.1-fold of that in the batch fermentation.  相似文献   

6.
Liu YP  Zheng P  Sun ZH  Ni Y  Dong JJ  Zhu LL 《Bioresource technology》2008,99(6):1736-1742
In this work, production of succinic acid by Actinobacillus succinogenes CGMCC1593 using cane molasses as a low cost carbon source was developed. In anaerobic bottles fermentation, succinic acid concentration of 50.6+/-0.9 g l(-1) was attained at 60 h using an optimum medium containing molasses pretreated with sulfuric acid, resulting in a succinic acid yield of 79.5+/-1.1% and sugar utilization of 97.1+/-0.6%. When batch fermentation was carried out in a 5-l stirred bioreactor with pretreated molasses, 46.4 g l(-1) of succinic acid was attained at 48 h and faster cells growth was also observed. Fed batch fermentation was performed to minimize the substrate (sugar) inhibition effect, giving 55.2 g l(-1) of succinic acid and 1.15 g l(-1)h(-1) of productivity at 48 h. The present study suggests that the inexpensive cane molasses could be utilized for the economical and efficient production of succinic acid by A. succinogenes.  相似文献   

7.
Huang C  Wu H  Li RF  Zong MH 《New biotechnology》2012,29(3):372-378
Oleaginous yeast Trichosporon fermentans was proved to be able to use sulphuric acid-treated sugar cane bagasse hydrolysate as substrate to grow and accumulate lipid. Activated charcoal was shown as effective as the more expensive resin Amberlite XAD-4 for removing the inhibitors from the hydrolysate. To further improve the lipid production, response surface methodology (RSM) was used and a 3-level 4-factor Box-Behnken design was adopted to evaluate the effects of C/N ratio, inoculum concentration, initial pH and fermentation time on the cell growth and lipid accumulation of T. fermentans. Under the optimum conditions (C/N ratio 165, inoculum concentration 11%, initial pH 7.6 and fermentation time 9 days), a lipid concentration of 15.8g/L, which is quite close to the predicted value of 15.6g/L, could be achieved after cultivation of T. fermentans at 25°C on the pretreated bagasse hydrolysate and the corresponding lipid coefficient (lipid yield per mass of sugar, %) was 14.2. These represent a 32.8% improvement in the lipid concentration and a 21.4% increase in the lipid coefficient compared with the original values before optimization (11.9g/L and 11.7). This work further demonstrates that T. fermentans is a promising strain for lipid production and thus biodiesel preparation from abundant and inexpensive lignocellulosic materials.  相似文献   

8.
The potential oil-producing yeast Rhodotorula gracilis was found to produce higher yields of biomass (13.7 g/L) and lipids (20.3%) in a nitrogen-limited and economically cheaper medium (molasses without yeast extract) in a submerged fermentation system. But, when the yeast was grown on four different wheat bran media by solid-state fermentation technique, different media combinations affected the percent increase in biomass, protein, oil production, fatty acid profile and degree of saturation and unsaturation. The initial lipid content in the control medium was 3.5% while in a medium with wheat bran, molasses, and minerals it was 69.8%. The yeast did not produce alpha-amylase, amyloglucosidase and cellulolytic enzymes for the breakdown of wheat bran. The yeast produced red carotenoids, a precursor of vitamin B12 and some oligounsaturated fatty acids in the fermented product.  相似文献   

9.
Microthrix parvicella, cultivated in a medium with Tween 80 and Casamino acids, utilized only the oleic acid moiety of Tween 80 as carbon and energy source. The cell yield from Tween 80 was about 0.32 g dry weight of cells per g of Tween 80 consumed. As only the oleic acid moiety of Tween 80 was utilized, the cell yield from oleic acid was 1.3 g dry weight of cells per g oleic acid consumed. The amount of carbon produced as CO2 was less than 30% of the oleic acid-carbon and this low value was in agreement with the high cell yield. In batch culture M. parvicella stored large amounts of lipid material during the early growth phase. The fatty acids of the lipid globules were similar to the fatty acids supplied as carbon source. The percentage composition of the biomass changed to give C/N percentage ratios of about 15 during the early growth phase due to the high concentration of internal lipids and the low concentration of protein. The growth rate in batch culture was about 0.016 h-1 but was affected by the concentration of Casamino acids in the medium.  相似文献   

10.
Microbial lipids produced byRhodotorula glutinis grown in continuous culture with molasses under nitrogen-limiting conditions were evaluated and the effects of growth rate on fatty acid composition were studied. As the growth rate decreased, cell biomass, lipid content and lipid yield gradually increased. The maximum lipid content recorded was 39% (w/w) of dry cell biomass at a dilution rate of 0.04 h–1. The growth rate also affected fatty acid composition: oleic acid decreased with decreasing growth rate while stearic acid increased.  相似文献   

11.
The growth of an oleaginous strain of Yarrowia lipolytica on an industrial fat composed of saturated free fatty acids (stearin) was studied. Lipid accumulation during primary anabolic growth was critically influenced by the medium pH and the incubation temperature. This process was independent of the nitrogen concentration in the culture medium, but was favored at a high carbon substrate level and at a low aeration rate. At pH 6 and a temperature of 28-33 degrees C, 9-12 g/l of dry biomass was produced, whereas significant quantities of lipids were accumulated inside the yeast cells (0.44-0.54 g of lipid per gram of biomass). The strain showed the tendency to degrade its storage lipids, although significant amounts of substrate fat, rich in stearic acid, remained unconsumed in the culture medium. Y. lipolytica presented a strong fatty acid specificity. The fatty acids C12:0, C14:0, and C16:0 were rapidly incorporated and mainly used for growth needs, while C18:0 was incorporated with reduced rates and was mainly accumulated as storage material. Reserve lipids, principally composed of triacylglycerols (55% w/w of total lipids) and free fatty acids (35% w/w), were rich in stearic acid (80% w/w), while negligible amounts of unsaturated fatty acids were detected. When industrial glycerol was used as co-substrate, together with stearin, unsaturated fatty acid concentration in the reserve lipid increased.  相似文献   

12.
Thraustochytrids, in particular Schizochytrium spp., are used for the production of the valuable polyunsaturated fatty acid, docosahexaenoic acid (DHA; 22:6 n-3). Growth of Schizochytrium sp. G13/2S in a defined medium was initially made in shake-flask cultures to determine the optimum concentrations of glucose (100-200 g l(-1)) and ammonia ( approximately 300 mg l(-1)) that could be used by this microorganism. In subsequent fermenter cultures, a pH-auxostat method was used to maintain NH(3) from 200-300 mg l(-1). During the first 49 h of fermentation, 150 g glucose l(-1) produced 63 g cell dry wt l(-1). Although growth was not limited by the supply of nitrogen, total fatty acids were at 25% cell dry wt which is more than half the final lipid content of commercially-grown Schizochytrium biomass which uses N-limited medium in the final stages for maximum lipid accumulation. This strategy is therefore useful for the cultivation of Schizochytrium to a high cell density up to the point when lipid accumulation can be triggered by N exhaustion.  相似文献   

13.
乙酸是木质纤维素在水解过程中的主要副产物,高浓度的乙酸严重影响产油微生物的生长和油脂合成。本文研究了粘红酵母对乙酸的耐受性及其利用乙酸合成微生物油脂的能力。结果表明,在初始葡萄糖、木糖浓度分别为6 g/L和44 g/L的混合糖培养基中,乙酸浓度低于10 g/L时,不会对菌体生长产生抑制作用,油脂合成还得到了促进。当乙酸添加量为10 g/L时,生物量、油脂产量、油脂含量较对照组分别提高了21.5%、171.2%和121.6%。进一步研究表明,粘红酵母具备利用乙酸合成油脂的能力,当以乙酸为唯一碳源,浓度为25 g/L时,油脂产量达到3.20 g/L,油脂质量得率为13%。微生物油脂成分分析表明,粘红酵母以乙酸为底物制得的油脂可以作为制备生物柴油的油脂原料,其主要成分为棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸,其中饱和脂肪酸和不饱和脂肪酸含量分别为40.9%和59.1%。由于粘红酵母具有利用乙酸合成微生物油脂的能力,在以木质纤维素水解液为原料生产微生物油脂的脱毒过程中,一定浓度的乙酸可以不必脱除。  相似文献   

14.
Summary WhenMortierella alpina ATCC 32222 was incubated in a glucose salts medium at 25°C the biomass (17.5 g/l) contained 9.62% arachidonic acid which amounted to 54% (w/w) of total biomass lipids. When the glucose concentration in the medium was varied from 0 to 150 g/l, the percentage of arachidonic acid in biomass and in lipids was highest at a glucose concentration of 30 g/l, but highest yield of arachidonic acid per litre of culture broth was observed at a glucose concentration of 100 g/l. While production of biomass reached a plateau of 17 g/l after a 3-day incubation at 25°C, the percentage of arachidonic acid in lipids and biomass increased dramatically from 3 to 6 days with a concurrent arachidonic acid yield increase from 0.89 to 1.63 g/l. Optimum initial culture pH for arachidonic acid production was in the range 6.0–6.7. By increasing the concentration of the glucose salts medium three-fold, yields of biomass and arachidonic acid were increased to 35.8 g/l and 3.73 g/l, respectively.  相似文献   

15.
In this work, sequential optimization strategy, based on statistical designs, was employed to enhance the production of citric acid in submerged culture. For screening of fermentation medium composition significantly influencing citric acid production, the two-level Plackett-Burman design was used. Under our experimental conditions, beet molasses and corn steep liquor were found to be the major factors of the acid production. A near optimum medium formulation was obtained using this method with increased citric acid yield by five-folds. Response surface methodology (RSM) was adopted to acquire the best process conditions. In this respect, the three-level Box-Behnken design was applied. A polynomial model was created to correlate the relationship between the three variables (beet molasses, corn steep liquor and inoculum concentration) and citric acid yield. Estimated optimum composition for the production of citric acid is as follows pretreated beet molasses, 240.1g/l; corn steep liquor, 10.5g/l; and spores concentration, 10(8)spores/ml. The optimum citric acid yield was 87.81% which is 14 times than the basal medium. The five level central composite design was used for outlining the optimum values of the fermentation factors initial pH, aeration rate and temperature on citric acid production. Estimated optimum values for the production of citric acid are as follows initial pH 4.0; aeration rate, 6500ml/min and fermentation temperature, 31.5 degrees C.  相似文献   

16.
ABSTRACT: BACKGROUND: Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. METHODS: R. toruloides was grown in batch and fed-batch cultures in 0.5 l bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100) media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. RESULTS: R. toruloides was grown on glucose, xylose, arabinose or mixtures of these carbohydrates in batch and fed-batch, nitrogen restricted conditions. Lipid production was most efficient with glucose (up to 25 g lipid L1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L1h1) as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass). Lipid production was low (15-19% lipid in biomass) with arabinose as sole carbon source and was lower than expected (30% lipid in biomass) when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L1, with 49% lipid in the biomass) and fed-batch (35 to 47 g L1, with 50 to 75% lipid in the biomass) cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. CONCLUSIONS: Lipid production in R. toruloides was lower from arabinose and mixed carbohydrates than from glucose or xylose. Although high biomass and lipid production were achieved in both batch and fed-batch cultures with glucose as carbon source, for lipid production from mixtures of carbohydrates fed-batch cultivation was preferable. Constant feeding was better than intermittent feeding. The feeding strategy did not affect the relative proportion of different fatty acids in the lipid, but the presence of C5 sugars did.  相似文献   

17.
培养条件对产油微生物生长的影响   总被引:1,自引:0,他引:1  
为了筛选出高产油菌株, 首先采用细胞形态学方法与细胞化学方法(苏丹III染色法)对4株高产油脂菌株进行初筛, 并通过索氏提取法对初筛菌株油脂含量进行分析, 确定M2菌株为实验菌株, 其油脂含量达53.09%。为了增加产油微生物油脂产量, 本试验考察了不同发酵条件对其细胞生长和油脂积累的影响。优化工艺参数为: 10° Bx玉米皮渣水解液为培养基质, 0.2% NaNO3为氮源, pH 6.0、28oC下发酵培养6 d, 微生物油脂含量75.21%, 菌体生物量30.40 g/L, 油脂产量22.86 g/L。气相色谱分析表明该油脂的脂肪酸组成与植物油相似, 主要含有16碳和18碳系脂肪酸, 可作为生物柴油的原料, 不饱和脂肪酸含量达68%, 可应用于医药化工领域。  相似文献   

18.
为了提高丰富栅藻的油脂产量和评估培养条件对其营养成分的影响,对丰富栅藻的培养基正交优化后,对其进行两步法培养并分析培养前后的脂肪酸和氨基酸的变化。结果表明:两步法培养后丰富栅藻的生物量、油脂含量和油脂产量分别达到23.57 g/L、33.49%和7.58 g/L; 丰富栅藻的单不饱和脂肪酸(MUFAs)特别是C18:1(n-9)的相对含量有所上升,但是饱和脂肪酸(SFAs)和多不饱和脂肪酸(PUFAs)的相对含量有所下降; 氨基酸特别是必需氨基酸的总量降低; 但丝氨酸和蛋氨酸的含量却略有增加。  相似文献   

19.
Species of various filamentous fungus taxa were tested for ability to produce lipids suitable as a material for manufacturing biodiesel. The mucoralean fungus Cunninghamella japonica was found to be a promising lipid producer. The inexpensive medium for its growth developed in this study contained ammonium nitrate as a nitrogen source. With its use, up to 16 g/l biomass and over 7 g/l lipids was obtained. The fungal lipids were dominated by oleic acid. It constituted 50% of total fatty acids. The iodine index of the lipid fraction was 86.61. The heat of combustion of the lipids, 37.13 MJ/kg, was close to the value for rapeseed oil.  相似文献   

20.
Lipid homeostasis is well-known in oleaginous yeasts, but there are few non-oleaginous yeast models apart from Saccharomyces cerevisiae. We are proposing the non-oleaginous yeast Candida zeylanoides QU 33 as model. The aim of this study was to investigate the influence of the carbon/nitrogen ratio and the type of nitrogen source upon oil accumulation by this yeast grown on shake flask cultures. The maximum biomass was obtained in yeast extract (2.39?±?0.19 g/l), followed by peptone (2.24?±?0.05 g/l), while the highest content of microbial oil (0.35?±?0.01 g/l) and the maximum lipid yield (15.63 %) were achieved with peptone. Oleic acid was the predominant cellular fatty acid in all culture media (>32.23 %), followed by linoleic (>15.79 %) and palmitic acids (>13.47 %). The highest lipid yield using glucose and peptone was obtained at the C/N ratio of 200:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号