共查询到10条相似文献,搜索用时 46 毫秒
1.
Rebecca B. Harris Matthew D. Carling Irby J. Lovette 《Evolution; international journal of organic evolution》2014,68(2):501-513
In this study, we explore the long‐standing issue of how many loci are needed to infer accurate phylogenetic relationships, and whether loci with particular attributes (e.g., parsimony informativeness, variability, gene tree resolution) outperform others. To do so, we use an empirical data set consisting of the seven species of chickadees (Aves: Paridae), an analytically tractable, recently diverged group, and well‐studied ecologically but lacking a nuclear phylogeny. We estimate relationships using 40 nuclear loci and mitochondrial DNA using four coalescent‐based species tree inference methods (BEST, *BEAST, STEM, STELLS). Collectively, our analyses contrast with previous studies and support a sister relationship between the Black‐capped and Carolina Chickadee, two superficially similar species that hybridize along a long zone of contact. Gene flow is a potential source of conflict between nuclear and mitochondrial gene trees, yet we find a significant, albeit low, signal of gene flow. Our results suggest that relatively few loci with high information content may be sufficient for estimating an accurate species tree, but that substantially more loci are necessary for accurate parameter estimation. We provide an empirical reference point for researchers designing sampling protocols with the purpose of inferring phylogenies and population parameters of closely related taxa. 相似文献
2.
Wiuf C 《Journal of mathematical biology》2006,53(5):821-841
Composite likelihood methods have become very popular for the analysis of large-scale genomic data sets because of the computational intractability of the basic coalescent process and its generalizations: It is virtually impossible to calculate the likelihood of an observed data set spanning a large chromosomal region without using approximate or heuristic methods. Composite likelihood methods are approximate methods and, in the present article, assume the likelihood is written as a product of likelihoods, one for each of a number of smaller regions that together make up the whole region from which data is collected. A very general framework for neutral coalescent models is presented and discussed. The framework comprises many of the most popular coalescent models that are currently used for analysis of genetic data. Assume data is collected from a series of consecutive regions of equal size. Then it is shown that the observed data forms a stationary, ergodic process. General conditions are given under which the maximum composite estimator of the parameters describing the model (e.g. mutation rates, demographic parameters and the recombination rate) is a consistent estimator as the number of regions tends to infinity. 相似文献
3.
JAMES D. AUSTIN STEPHEN C. LOUGHEED PAUL E. MOLER PETER T. BOAG 《Biological journal of the Linnean Society. Linnean Society of London》2003,80(4):601-624
The Rana catesbeiana species group consists of seven species, each variously distributed across eastern North America. We estimated the evolutionary relationships among 31 exemplars and used the phylogenetic hypothesis to examine the potential modes of speciation and relative role of dispersal in the evolution and zoogeography of this species group. Phylogenetic relationships based on 1554 combined base pairs of the cytochrome b and ND2 mitochondrial genes suggest that the species are closely related, having undergone rapid radiation from a common ancestor during the late Miocene or Pliocene. A Pleistocene origin for the rare R. okaloosae is suggested by its pattern of paraphyly with R. clamitans and by its geographically restricted distribution, although hybridization as the explanation for paraphyly cannot be ruled out. Dispersal–vicariance analysis suggested a Coastal Plain biogeographical region origin of the species group, supporting the notion that the region was an important centre of anuran diversification, with post-speciation dispersal playing a major role in explaining the distribution of the widespread species, R. catesbeiana , R. clamitans, and R. septentrionalis . High sea levels during the late Tertiary, greatly reducing and insularizing parts of the southern Coastal Plain region may have played a major role in the diversification of this group. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 601–624. 相似文献
4.
5.
Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives 总被引:4,自引:0,他引:4
Drawing on field studies of pollen dispersal, we identify features of the hybridization process that need quantification. Our emphasis is on standardized measures, as opposed to the idiosyncratic and often anecdotal methods with which gene flow or out-crossing data are currently reported. In addition to proposing specific maximum likelihood approaches, we summarize some results to date from small-scale field trials that bear on the risks anticipated for large-scale commercialization. We conclude that absolute containment of recombinant pollen or genes is unlikely if physical isolation is the only containment strategy. Because we conclude that the escape of transgenic pollen is inevitable, we argue that the focus of risk analysis should be shifted towards the 'invasiveness' of transgenic plants and 'mitigation' of their impact on natural, as well as agricultural systems. 相似文献
6.
Allopatry and allopatric speciation can arise through two different mechanisms: vicariance or colonization through dispersal. Distinguishing between these different allopatric mechanisms is difficult and one of the major challenges in biogeographical research. Here, we address whether allopatric isolation in an endemic island lizard is the result of vicariance or dispersal. We estimated the amount and direction of gene flow during the divergence of isolated islet populations and subspecies of the endemic Skyros wall lizard Podarcis gaigeae, a phenotypically variable species that inhabits a major island and small islets in the Greek archipelago. We applied isolation-with-migration models to estimate population divergence times, population sizes and gene flow between islet-mainland population pairs. Divergence times were significantly correlated with independently estimated geological divergence times. This correlation strongly supports a vicariance scenario where islet populations have sequentially become isolated from the major island. We did not find evidence for significant gene flow within P. g. gaigeae. However, gene-flow estimates from the islet to the mainland populations were positively affected by islet area and negatively by distance between the islet and mainland. We also found evidence for gene flow from one subspecies (P. g. weigandi) into another (P. g. gaigeae), but not in the other direction. Ongoing gene flow between the subspecies suggests that even in this geographically allopatric scenario with the sea posing a strong barrier to dispersal, divergence with some gene flow is still feasible. 相似文献
7.
Qixin He Danielle L. Edwards L. Lacey Knowles 《Evolution; international journal of organic evolution》2013,67(12):3386-3402
Tests of the genetic structure of empirical populations typically focus on the correlative relationships between population connectivity and geographic and/or environmental factors in landscape genetics. However, such tests may overlook or misidentify the impact of candidate factors on genetic structure, especially when connectivity patterns differ between past and present populations because of shifting environmental conditions over time. Here we account for the underlying demographic component of population connectivity associated with a temporarily dynamic landscape in tests of the factors structuring population genetic variation in an Australian lizard, Lerista lineopunctulata, from 24 nuclear loci. Correlative tests did not support significant effect from factors associated with a static contemporary landscape. However, spatially explicit demographic modeling of genetic differentiation shows that changes in environmental conditions (as estimated from paleoclimatic data) and corresponding distributional shifts from the past to present landscape significantly structures genetic variation. Results from model‐based inference (i.e., from an integrative modeling approach that generates spatially explicit expectations that are tested with approximate Bayesian computation) contrasts with those from correlative analyses, highlighting the importance of expanding the landscape genetic perspective to tests the links between pattern and process, revealing how factors shape patterns of genetic variation within species. 相似文献
8.
Abstract.— We develop a Monte Carlo-based likelihood method for estimating migration rates and population divergence times from data at unlinked loci at which mutation rates are sufficiently low that, in the recent past, the effects of mutation can be ignored. The method is applicable to restriction fragment length polymorphisms (RFLPs) and single nucleotide polymorphisms (SNPs) sampled from a subdivided population. The method produces joint maximum-likelihood estimates of the migration rate and the time of population divergence, both scaled by population size, and provides a framework in which to test either for no ongoing gene flow or for population divergence in the distant past. We show the method performs well and provides reasonably accurate estimates of parameters even when the assumptions under which those estimates are obtained are not completely satisfied. Furthermore, we show that, provided that the number of polymorphic loci is sufficiently large, there is some power to distinguish between ongoing gene flow and historical association as causes of genetic similarity between pairs of populations. 相似文献
9.
Wu Y 《Evolution; international journal of organic evolution》2012,66(3):763-775
Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. 相似文献
10.
GARY VOELKER RAURI C. K. BOWIE BERYL WILSON CORNE ANDERSON 《Biological journal of the Linnean Society. Linnean Society of London》2012,106(1):180-190
Phylogenetic relationships among eight of nine Myrmecocichla chat species were inferred from DNA data. Bayesian posterior probabilities and maximum‐likelihood bootstrap percentages strongly supported most branches in the phylogeny. Based on these results, Myrmecocichla, as currently defined, is not monophyletic. The results indicated that Myrmecocichla albifrons is part of a Cercomela + Oenanthe clade, whereas Oenanthe monticola is shown to be a Myrmecocichla. In addition, Myrmecocichla arnotti is shown to be polyphyletic. Phylogenetic analyses support three Southern versus Eastern or Northern speciation events. The dating of these speciation events suggests that they correspond to periods when the Afrotropical forests were expanded to coastal Kenya, 3–5 Mya. This forest expansion thus served as a vicariant driver of speciation in the genus, a result consistent with speciation patterns in other arid‐adapted African bird genera. Our haplotype analysis within one of the most widespread and habitat diverse Myrmecocichla species (formicivora, a southern African endemic) showed little genetic variation. Along with speciation patterns shown for Myrmecocichla and other avian genera, this lack of standing variation would appear to support large, inter‐regional drivers of speciation as having the largest effect on the diversification of arid‐adapted Africa bird species, which is in stark contrast to other vertebrate lineages whose genetic structure often shows strong intra‐regional effects. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 180–190. 相似文献