首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.  相似文献   

2.
The reproductive success of a population of Blackbirds Turdus merula occupying farmland and woodland was studied over 3 years to investigate the effects of habitat on breeding success. Territory distribution was patchy in both farmland and woodland; some areas were unoccupied, while other areas were occupied at variable densities. Habitat structure appeared to influence occupation: the index of habitat complexity ("cover score") was higher in occupied areas than in unoccupied areas and high-density territories had higher cover scores than low-density territories. However, habitat structure had no significant effect on reproductive success because the cover scores of territories where pairs were successful did not differ significantly from those of territories where there were no successful breeding attempts. There was no evidence of differential mortality rates in adults according to habitat. The height, bulk and exposure of c. 430 nests were measured to determine the effect of nest and nest-site characteristics on reproductive success. Nest exposure was the only feature that differed between successful and failed nests, successful nests being less exposed than failed nests. The major cause of breeding failure was nest predation, but the effect of nest exposure operated only during the laying and incubation period and not during the nestling period. The significance of habitat structure for variation in population densities between habitats is discussed.  相似文献   

3.
Predation risk effects on fitness related measures in a resident bird   总被引:1,自引:0,他引:1  
Predation risk is thought to be highly variable in space and time. However, breeding avian predators may create locally fixed and spatially fairly predictable predation risk determined by the distance to their nest. From the prey perspective, this creates predation risk gradients that potentially have an effect on fitness and behavioural decisions of prey. We studied how breeding avian predators affect habitat selection (nest location) and the resulting fitness consequences in a northern population of resident willow tit ( Parus montanus ). Data included 429 willow tit nests over a four year period in a landscape containing a total of 33 avian predator nests. Willow tit nests were located randomly in the landscape and no predator avoidance in habitat selection or emptying of territories in proximity to predators was observed. Nestling size, however, was positively associated with distance from predator nests (n=252). Nestling mass and wing length were about 4.5% smaller close to predator nests compared to nestlings raised far from predator nests. Tarsus length also exhibited a positive relationship with increasing distance from predator nest but this was limited to habitats of young forests and pine bogs or dense mixed forests (4% increase). It is likely that habitat structural complexity influenced the perception of predation risk in different habitats. Our results indicate that willow tits do not provide reliable cues of predator free habitats for settling migrants. Nonetheless, breeding avian predators may create predictable predation risk in the landscape which is an important factor affecting reproductive success and potentially the demography of prey populations.  相似文献   

4.
Eva Banda  Guillermo Blanco 《Oikos》2009,118(7):991-1000
Nest‐site limitation may have different implications in the spatial distribution of breeding pairs depending on the availability of suitable habitat and the types of nest‐sites. Distribution of cavities suitable as nest sites may allow circumstantial aggregation or active choice of colonial nesting, which may have different implications on breeding performance through effects on breeding density, with variable costs and benefits depending on the consequences of intraspecific competition, social interactions and predation. We evaluated the effects of breeding density derived from nesting site limitation on breeding performance and predation at different spatial scales and considering multiple social, population and environmental limiting factors in the red‐billed chough Pyrrhocorax pyrrhocorax. The results indicate that variable breeding density may arise within the population depending on the availability and spatial distribution of nest‐sites. Nest‐site availability and distribution may also determine social breeding systems (isolated or aggregated) at variable densities, thus resembling differences found at different spatially distant populations under contrasting environmental conditions. Breeding performance was related to density‐dependent processes of population regulation, especially density‐dependent nest predation due to predator attraction to nest clusters. Results also indicate that predation pressure depend on density patterns at large scales. This suggest that predation may have important consequences on population dynamics of spatially structured populations depending on the strength of this kind of density dependence, which in turn may depend on habitat features affecting the prey but also the spatially variable guild of predators. Because habitat and nesting site availability may vary spatially depending on multiple human influences, understanding the strength and form in which breeding density and nest predation at different spatial scales may influence the size and persistence of populations can help to manage them more adequately.  相似文献   

5.
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.  相似文献   

6.
Schneider NA  Low M  Arlt D  Pärt T 《PloS one》2012,7(2):e31517
Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height) affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe). As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation). No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland). This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i) that edge effects depend on edge contrast, (ii) that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.  相似文献   

7.
ABSTRACT.   Population declines among birds are often linked to habitat change and associated increases in nest predation rates. In species of conservation concern identifying nest predators is an important first step in developing management strategies to mitigate low nesting success caused by depredation. Because predator composition varies geographically and with landscape factors habitat restoration may need to be tailored to reduce locally important predators. We used miniature video cameras to identify nest predators in a population of Florida Scrub-Jays ( Aphelocoma coerulescens ) significant to conservation. At 22 nests we observed 25 predation events; 22 (88%) of these events were nocturnal. Yellow rat snakes ( Elaphe obsoleta ) had the highest daily predation rate and accounted for 76% of egg and nestling losses. Florida Scrub-Jays are vulnerable to nocturnal nest predation because their vigilance behavior is ineffective against nocturnal predators, breeders cannot defend against nocturnal predators, and brooding females are at risk of being killed by nocturnal predators. If current habitat restoration efforts do not reduce numbers of yellow rat snakes and improve scrub-jay nesting success, management actions to reduce populations of nocturnal snakes may need to be considered.  相似文献   

8.
The role of temporal changes and spatial variability in predation risk and prey's means of mitigating such risks is poorly understood in the context of potential threats of global climate change for migratory birds. Yet nest predation, for example, represents a primary source of reproductive mortality in birds. To assess risk birds must spend time prospecting potential breeding sites for cues or signals of predator presence. However, competition for breeding sites with advantage to prior residency poses an evolutionary dilemma as individuals also benefit from early settling. We develop a model to examine adaptive prospecting time for predator cues on breeding grounds characterized by spatial heterogeneity in nest predation risk. We study how populations respond to environmental change represented by variation in habitat specific levels of nest predation, habitat composition, population vital rates, and availability of information (via prospecting) in the form of acoustic predator cues. We identify two mechanisms that regulate and buffer impacts of environmental change on populations. First, the adaptive response to lower population abundance under deteriorating environmental conditions is to increase prospecting time, which in turn increases individuals nest success to counteract population declines. This occurs because reduced competition for sites decreases the benefit of early settlement. Second, per capita success in site choice increases during population declines owing to reduced competition that increases the availability of good sites. We also show that the increased benefit to settling early when competition increases can lead to the paradoxical result that with greater spatial heterogeneity, less effort is placed on discerning good and bad sites. Our analysis thus contributes several novel results by which nest predation, settlement phenology, prospecting time and information gathering can influence species capacity to adapt to changing environments.  相似文献   

9.
Both local and landscape-scale habitat variables influence the abundance of wetland breeding birds. Few studies, however, simultaneously assess the effects of habitat variables at multiple spatial scales or consider effects on reproductive success. Therefore, we examined the effects of wetland and landscape-scale habitat variables on the abundance of nine breeding bird species and the effects of nest, wetland, or landscape-scale habitat variables on the nest success, clutch size, or number of fledglings of four species at 15 cattail (Typha sp.)-dominated wetlands in an agricultural region around Peterborough, Ontario, Canada. The abundance of Least Bittern (Ixobrychus exilis), Common Moorhen (Gallinula chloropus), and Marsh Wren (Cistothorus palustris) increased as wetland water depth increased; the abundance of Common Moorhen and Marsh Wren increased as wetland size increased; and the abundance of Marsh Wren increased as the amount of wetland in the surrounding landscape increased. Red-winged Blackbird (Agelaius phoeniceus) nest success decreased as nest cover increased. Clutch sizes were uninfluenced by the habitat variables that we considered. The number of Red-winged Blackbird fledglings per successful nest increased as wetland size increased and as the amount of wetland in the surrounding landscape increased. We speculate that food limitation in small wetlands may be responsible for the pattern in Red-winged Blackbird fledging success. The abundance and nest success of Virginia Rail (Rallus limicola) and Sora (Porzana carolina) were uninfluenced by the habitat variables we considered. Future research should consider mate attraction and productivity in relation to local and landscape-scale habitat variables for these and other secretive species. Our study suggests that wetland conservation will be most effective if it considers habitat variables at multiple spatial scales.  相似文献   

10.
Factors affecting nest predation on forest songbirds in North America   总被引:2,自引:1,他引:1  
FRANK R. THOMPSON  III 《Ibis》2007,149(S2):98-109
Nest predation is an important factor in the ecology of passerines and can be a large source of mortality for birds. I provide an overview of factors affecting nest predation of passerines in North America with the goal that it may provide some insight into the ecology and management of woodland birds in the United Kingdom. Although several factors influence productivity, nest success is perhaps the most widely measured demographic characteristic of open-cup-nesting birds, and nest predation is usually the largest cause of nest failure. The identity of predator species, and how their importance varies with habitat and landscape factors, must be known for managers and scientists to design effective conservation plans and place research on nest predation in the appropriate context. Recent studies using video surveillance have made significant contributions to our understanding of the relative importance of different predator taxa in North America. Spatial and temporal variation in nest predation can be better understood when landscapes are placed in a biogeographical context and local habitat and nest-site effects are placed in a landscape context. Low productivity resulting from high nest predation is one of several potential causes of bird population declines in North America and the UK. Although the 'forest fragmentation paradigm' from the eastern US may not apply directly to the UK, thinking about avian demographics from a multiscale perspective, and consideration of factors affecting nest predation with knowledge of the dominant predator species, may provide insight into population declines.  相似文献   

11.
Nest predation and its avoidance are critical components of an individual's fitness and play an important role in life history evolution. Almost all studies on this topic have been observational, and thus have not been able to separate the effects of individual quality, habitat selection and predation risk of given nest sites from each other. More experimental studies on nest predation and breeding dispersal, therefore, are needed to avoid confusing interpretations of the results. In western Finland, pine marten (Martes martes) predation risk was experimentally simulated at the nests of Tengmalm's owls (Aegolius funereus) by using a caged American mink (Mustela vison) as a predator. Nests without exposure to a mink served as controls. In accordance with our predictions and earlier observational studies, males exposed to simulated predation risk increased nest-hole shift and breeding dispersal distances compared to control males. Nest-hole shift and long breeding dispersal distances probably decrease the risk of nest predation, because pine martens are known to revisit nest-holes they have found.  相似文献   

12.
In avian systems, nest predation is one of the most significant influences on reproductive success. Selection for mechanisms and behaviours to minimise predation rates should be favoured. To avoid predation, breeding birds can often deter predators through active nest defence or by modifying behaviours around the nest (e.g. reducing feeding rates and vocalisations). Birds might also benefit from concealing nests or placing them in inaccessible locations. The relative importance of these strategies (behaviour vs. site selection) can be difficult to disentangle and may differ according to life history. Tropical birds are thought to experience higher rates of predation than temperate birds and invest less energy in nest defence. We monitored a population of crimson finches (Neochmia phaeton), in the Australian tropics, over two breeding seasons. We found no relationship between adult nest defence behaviour (towards a model reptile predator) and the likelihood of nest success. However, nest success was strongly related to the visibility of the nest and the structure of the vegetation. We found no evidence that adult nest building decisions were influenced by predation risk; individuals that re‐nested after a predation event did not build their nest in a more concealed location. Therefore, predator avoidance, and hence nest success, appears to be largely due to chance rather than due to the behaviour of the birds or their choice of nesting sites. To escape high predation pressures, multiple nesting attempts both within and between seasons may be necessary to increase reproductive success. Alternatively, birds may be limited in their nest‐site options; that is, high‐quality individuals dominate quality nest sites.  相似文献   

13.
Koivula  K.  Rönkä  A. 《Oecologia》1998,116(3):348-355
Many populations of waders breeding on open shores and shores with short vegetation especially on the Baltic coasts have recently become endangered. The declines have taken place simultaneously with human-induced loss and deterioration of habitats due to eutrophication and overgrowth. To investigate mechanisms by which habitat changes could affect breeding success and ultimately population dynamics, we studied an endangered coastal population of Temminck's stint. We hypothesized that the rate of nest predation has become higher because the nest defence strategy (early detection of predator and early departure from the nest), which originally evolved in open habitats, is less effective on shores with reduced visibility. As predicted, nests survived better on wide than on narrow shores. Predation made a major contribution to this trend, although successful and predated nests did not differ in concealment at a microhabitat scale. The better the visibility from the nest, the longer was the flushing distance, but only in response to alarm calls or behaviour of other species, not when they were absent. Temminck's stints seem to obtain information about an approaching predator visually from sentinels. Therefore, it is essential that there is at least moderate visibility around the nest. We conclude that habitat characteristics – visibility from the nest and sentinel birds – affect the effectiveness of the nest defence strategy of Temminck's stint. These should be taken into account when seeking causes and mechanisms for declines of Temminck's stint and other waders of open and shortly vegetated shores. Received: 5 January 1998 / Accepted: 20 April 1998  相似文献   

14.
The reproductive interactions of the Shiny Cowbird Molothrus bonariensis , a brood parasite, and the Yellow-hooded Blackbird Agelaius icterocephalus , a host of the cowbird, were studied In Trinidad, West Indies. We gathered information on the breeding biology of the Shiny Cowbird and the Yellow-hooded Blackbird, the frequency of use of the host species, and the effects of brood parasitism on host breeding success. Yellow-hooded Blackbirds are polygynous for the most part; males build nests and attempt to attract females to lay in them by means of song and visual displays directed towards the nests. This behaviour probably makes it easy for cowbirds to locate breeding birds and their nests. Cowbird eggs were found in 153 of 377 (40–3 %) blackbird nests located before the nestling stage. Shiny Cowbird parasitism of the Yellow-hooded Blackbird had little negative impact on host reproductive success, whereas predation accounted for the majority of nest failures. Vigilant nest defense by male blackbirds combined with colonial breeding apparently also minimized the extent of host egg damage and removal by cowbirds, and the parasitized and unparasitized nests were equally successful at producing blackbirds. Cowbirds most frequently parasitized the first or only nesting attempts in blackbird territories, and first or only nests were also successful more frequently than subsequent nests.  相似文献   

15.
The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity.  相似文献   

16.
Although avian nesting success is much studied, little is known about the relative importance of the factors that contribute to annual reproductive success and population limitation, especially for long‐distance migratory songbird species. We combined a field experiment limiting access to nests by mammalian predators with modeling of long‐term field data of American redstarts (Parulidae: Setophaga ruticilla) to assess the effects of multiple environmental variables on breeding success and population limitation. Experimental treatment (baffles placed around tree boles beneath active nests; n = 71) increased nesting success of this single‐brooded species significantly (77 vs 50% in controls; n = 343), demonstrating that scansorial mammals, primarily red squirrels Tamiasciurus hudsonicus and eastern chipmunks Tamias striatus, reduced reproductive success. Based on unbaffled nests (n = 466), daily nest survival varied annually, and was positively influenced by May temperature and negatively by sciurid nest predator abundance. Daily nest survival was also influenced positively by June rainfall, and declined with nest age but not with calendar date. Since nest failure was overwhelmingly caused by nest predation, these significant climate and nest‐age effects in our models are indirect, likely influencing nest predator and/or nesting bird behaviors that in turn influenced nest predation. Redstart population density had no effect on nesting success, after accounting for other factors. Annual reproductive success accounted for 34% of the variability in annual population change in redstarts in our study area. Our findings document 1) breeding season population limitation in this species, 2) a link between tree masting and bird population dynamics via mammal population fluctuations, 3) the independent contributions of summer versus winter population processes in a migratory species, and 4) the potential complexity of climate‐biotic interactions.  相似文献   

17.
In Europe, lowland wet grasslands have become increasingly fragmented, and populations of waders in these fragments are subject to unsustainably high levels of nest predation. Patches of taller vegetation in these landscapes can support small mammals, which are the main source of prey for many predators. Providing such patches of habitat could potentially reduce levels of nest predation if predators preferentially target small mammals. However, predator attraction to patches of taller vegetation for foraging, shelter, perching and/or nesting could also result in local increases in predation rates, as a consequence of increased predator densities or spill‐over foraging into the surrounding area. Here we assess the influence of taller vegetation on wader nest predation rates, and the feasibility of managing vegetation structure to alter predator impacts. Between 2005 and 2011, the nest distribution and hatching success of Northern Lapwings Vanellus vanellus, which nest in the open, and Common Redshanks Tringa totanus, which conceal their nests in vegetation, were measured on a 487‐ha area of wet grassland in eastern England that is primarily managed for breeding waders. Predation rates of Lapwing nests increased significantly with distance from patches of taller vegetation, and decreased with increasing area of taller vegetation within 1 km of the nest, whereas neither variable influenced Redshank nest predation probability. These findings suggest that the distribution and activity of nest predators in lowland wet grassland landscapes may be influenced by the presence and distribution of areas of taller vegetation. For Lapwings at least, there may therefore be scope for landscape‐scale management of vegetation structure to influence levels of predation in these habitats.  相似文献   

18.
Pink-footed geese Anser brachyrhynchus nest in two contrasting but commonly found habitats: steep cliffs and open tundra slopes. In Svalbard, we compared nest densities and nesting success in these two environments over ten breeding seasons to assess the impact of spring snow cover, food availability to nesting adults and arctic fox Vulpes lagopus (main terrestrial predator) abundance. In years with extensive spring snow cover, fewer geese at both colonies attempted to breed, possibly because snow cover limited pre-nesting feeding opportunities, leaving adults in poor breeding condition. Nesting success at the steep cliff colony was lower with extensive spring snow cover; such conditions force birds to commit to repeated and prolonged recess periods at far distant feeding areas, leaving nests open to predation. By contrast, nesting success at the open tundra slope was not affected by spring snow cover; even if birds were apparently in poor condition they could feed immediately adjacent to their nests and defend them from predators. Foxes were the main nest predator in the open tundra slopes but avian predators likely had a larger impact at the steep cliffs colony. Thus, the relative inaccessibility of the cliffs habitat may bring protection from foxes but also deprives geese from readily accessing feeding areas, with the best prospects for successful nesting in low spring snow cover years. Our findings indicate that spring snow cover, predator abundance and food proximity did not uniformly influence nesting success of this herbivore, and their effects were dependent on nesting habitat choice.  相似文献   

19.
As saltmarsh habitat continues to disappear, understanding the factors that influence the population dynamics of saltmarsh breeding birds is an important step in the conservation of these declining species. Using 5 yrs (2011–2015) of demographic data, we evaluated and compared apparent adult survival and nest survival of Seaside (Ammodramus maritimus) and Saltmarsh (A. caudacutus) sparrows at the Edwin B. Forsythe National Wildlife Refuge in New Jersey, USA. We determined the effect of site management history (unditched vs. ditched marshes) on adult and nest survival to aid in prioritizing future management or restoration actions. Apparent adult survival (61.6%, 95% CI: 52.5–70.0%) of Seaside Sparrows averaged > 1.5 times greater than that of Saltmarsh Sparrows (39.9%, 95% CI: 34.0–46.2%). Nest survival and predation and flooding rates did not differ between species, and predation was the primary cause of nest failure for both species. Apparent adult survival and nest survival did not differ between unditched and ditched marshes for either species, indicating that marsh ditching history may not affect the quality of breeding habitat for these species. Because predation was the primary cause of nest failure for both species in New Jersey, we suggest that future studies should focus on identifying predator communities in salt marshes and the potential for implementing predator‐control programs to limit population declines.  相似文献   

20.
Effective conservation of endangered species requires a solid understanding of the demographic causes of population change. Bird populations breeding on agricultural grasslands have declined because their preferred habitat of herb‐rich meadows has been replaced by grassland monocultures. The timing of agricultural activities in these monocultural grasslands is critical, as they often coincide with the nesting phase of breeding birds. Here, we aim to identify the effect of habitat management and targeted nest protection on nest survival of Black‐tailed Godwits Limosa limosa in the Netherlands, a population that has shown a 70% reduction in breeding population size since the 1970s. To protect nests in monocultures from destruction, farmers are paid to either delay mowing or leave a patch of unmown grass around the nest, a patch which in practice varied in size. In herb‐rich meadows, which are typically managed for bird conservation purposes, mowing occurs after hatching. Nest survival declined as the season advanced, more steeply on monocultures than on meadows. Targeted nest protection was only partially successful, as nest predation was considerably higher on mown grassland monocultures with small unmown patches around the nest than in mown monocultures with large unmown patches and in unmown fields. Increased predator densities over the years have been suggested as an important cause of the trend towards lower nest survival, but here we show that nest survival was higher on herb‐rich meadows than on monocultures, and similar to the 1980s. It thus seems that increased predator densities are an increased threat during the egg stage only if habitat quality is low. High‐quality habitat in the form of herb‐rich meadows therefore provides a degree of protection against predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号