首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
THE ELECTRON MICROSCOPY OF THE CHOROID PLEXUS   总被引:7,自引:6,他引:1       下载免费PDF全文
1. The choroid plexus of the rat has been studied in detail by electron microscopy. Samples from the frog, rabbit, and cat have also been examined without noting significant differences. 2. The surface of the ependymal epithelium is covered by pedicels of variable size. There is reason for thinking of these structures as labile. They may actually pinch off and contribute to the secretory product. In any case, the surface area is vastly increased by their presence. Polypoid border seems an apt term to apply to this type of surface. 3. There is also a great expansion of the basal surface of ependymal cells. In the vicinity of cell junctions this surface is deeply infolded, and continuous with elaborate interdigitations of the lateral intercellular surfaces. Analogous infolding of the basal cell surface is known to exist in other epithelia also noted for their water transport (kidney tubules, salivary gland, and ciliary body). 4. Pretreatment of rats with diamox, an agent known to block cerebro-spinal fluid production, did not produce an important morphological change in the features of the ependyma, or any other part of the choroid plexus. 5. Capillaries of the choroid plexus have a very attenuated endothelium. This is seen to be fenestrated. It is thought this probably represents the condition in life, and is not simply a fixation artefact. 6. Pial cells tend to interpose sheets of cytoplasm between the capillaries and ependyma. The sheets are not continuous, however, and so would not constitute a serious diffusion barrier. These cells belong to the reticuloendothelial system, and undergo shape changes, and probably increase in number, when the system is stimulated by the repeated injection of trypan blue.  相似文献   

2.
The spatial arrangement of tight junctions in choroid plexus and ciliary body rabbit epithelia has been determined by studying freeze-fracture complementary replicas. In the choroid plexus epithelium, the interruptions of the junctional P-face fibrils were measured to be 14% of their total length. In the ciliary body epithelium, where the fibrils were found to be more fragmented than in the choroid plexus, the P-face fibril interruptions accounted for 12 % of the total length of the zonulae occludentes sealing the non-pigmented cells and 30% in the focal linear tight junctions connecting the non-pigmented and pigmented cells at their apices. In both epithelia, the interruptions of the ridges are precisely complemented by particles or short bars of similar length found in the E-face furrows. Consequently, it is possible to conclude that the junctional fibrils are continuous in these two epithelia. For the zonulae occludentes, this continuity appears to be inconsistent with the ‘leaky’ properties of these epithelia shown by some physiological investigations.  相似文献   

3.
Corneal epithelium removed from underlying extracellular matrix (ECM) extends numerous cytoplasmic processes (blebs) from the formerly smooth basal surface. If blebbing epithelia are grown on collagen gels or lens capsules in vitro, the basal surface flattens and takes on the smooth contour typical of epithelium in contact with basal lamina in situ. This study examines the effect of soluble extracellular matrix components on the basal surface. Corneal epithelia from 9- to 11-d-old chick embryos were isolated with trypsin-collagenase or ethylenediamine tetraacetic acid, then placed on Millipore filters (Millipore Corp., Bedford, Mass.), and cultured at the medium-air interface. Media were prepared with no serum, with 10% of calf serum, or with serum from which plasma fibronectin was removed. Epithelia grown on filters in this medium continue to bleb for the duration of the experiments (12-14 h). If soluble collagen, laminin, or fibronectin is added to the medium, however, blebs are withdrawn and by 2-6 h the basal surface is flat. Epithelia grown on filters in the presence of albumin, IgG, or glycosaminoglycans continue to bleb. Epithelia cultured on solid substrata, such as glass, also continue to bleb if ECM is absent from the medium. The basal cell cortex in situ contains a compact cortical mat of filaments that decorate with S-1 myosin subfragments; some, if not all, of these filaments point away from the plasmalemma. The actin filaments disperse into the cytoplasmic processes during blebbing and now many appear to point toward the plasmalemma. In isolated epithelia that flatten in response to soluble collagens, laminin, and fibronectin, the actin filaments reform the basal cortical mat typical or epithelial in situ. Thus, extracellular macromolecules influence and organize not only the basal cell surface but also the actin-rich basal cell cortex of epithelial cells.  相似文献   

4.
Choroid plexus and paraphysis in lower vertebrates   总被引:1,自引:0,他引:1  
Cytoarchitecture of the choroid plexus of the third ventricle and the paraphysis was investigated in some lower vertebrates to compare the histologic characteristics of these organs. Both epithelia are similar in appearance in the same class. Minor microscopic variations exist in the different classes of vertebrates, but do not provide a fundamental distinction between the two organs. The epithelia, moreover, have similar staining properties, contain mucicarmine- and PAS-reactive materials, and are derived from a common neuroepithelium. Tubules are identified in the choroid plexus and in the paraphysis; all are similarly formed by simple folding of epithelium on the surface into the stroma. The paraphyses in all vertebrates studied contain villi similar to those seen in the choroid plexus. Cilia are identified in both choroidal and paraphyseal epithelia, and are not an indication of degree of epithelial differentiation. Many types of epithelium are noted in both organs during histologic differentiation as well as in the mature stage. Functionally, the choroid plexus is active in both secretion and absorption. Accumulation of particulate material within the epithelial cytoplasm may indicate phagocytic as well as absorptive activity of cells. Based on a common neuroepithelial origin and similar histochemical properties, we conclude that the paraphysis is a modified choroid plexus. The velum transversum is an arbitrary boundary between diencephalon and telencephalon, and is itself formed of choroid plexus. The medial telencephalic ventricle is the rostral portion of the third ventricle. All neuroepithelial infoldings at the rostral end of the diencephalic roof including the velum transversum are intraventricular choroid plexuses; the neuroepithelial outpouchings in this region are the extraventricular choroid plexuses (paraphysis) of the diencephalon.  相似文献   

5.
The study showed that the eyeball of Gambusia is spherical and that it has two thin transparent lids--a small upper lid and a larger lower lid. The cornea is composed of four layers, and the lens, which is relatively large, is covered externally by a lens capsule. The lens fibres are arranged in concentric lamellae. The ciliary body is present only on the ventral aspect of the eye. The iris is triangular and is densely pigmented with guanin crystals. As in other vertebrates, the retina consists of ten layers. The hyaloid or retinal artery lies among the optic nerve fibres. The photoreceptor cell layer is generally thick and contains rods and cones. The internal retinal envelope, the choroid coat, appears on the medial aspect of the eyeball as a thickened vascular part, referred to as the suprachoroidal layer. This layer contains a horseshoe-shaped gland, the choroid gland, the outer portion of which is surrounded by a layer of silvery guanin crystals generally termed the argentea.  相似文献   

6.
Summary Intraventricular blood vessels and choroidal-like cells were studied using scanning electron microscopy and correlative light microscopy. The intraventricular blood vessels were covered on their ependymal surface with a layer of cells essentially identical to the ependyma of the choroid plexus in the gerbil. Similar choroidal-like cells were seen either singly or in clusters associated with the cerebrospinal fluid-contacting pinealocytes of the suprapineal recess. Processes of the cerebrospinal fluid-contacting pinealocytes were seen extending to and making contact with the choroidal-like cells. The intraventricular blood vessels appeared to be derived from the choroid plexus, and typically took one of three courses in and around the surface of the deep pineal: (1) the vessels or their equivalent were located in the suprapineal recess with no indication of penetration into the substance of the deep pineal; (2) the vessels coursed from the suprapineal recess around the anterior surface of the habenular commissure to enter the ventral surface of the deep pineal; or (3) the vessels entered the parenchyma of the deep pineal from its dorsal surface and could be seen coursing through the substance of the gland. The close association between the choroidal-like cells and the intraventricular blood vessels with the deep pineal gland add morphological support for the possibility of interaction between the cerebrospinal fluid, or perhaps the choroid plexus, and the deep pineal gland.  相似文献   

7.
We previously reported a 120-kDa phosphoprotein that translocated from cytosol to the apical membrane of gastric parietal cells in association with stimulation of HCl secretion. To determine the molecular identity of the protein, we performed molecular cloning and expression of the protein. Immunoblot analysis showed that this protein was highly enriched in tissues that secrete water, such as parietal cell, choroid plexus, salivary duct, lacrimal gland, kidney, airway epithelia, and chorioretinal epithelia. We named this protein "parchorin" based on its highest enrichment in parietal cells and choroid plexus. We obtained cDNA for parchorin from rabbit choroid plexus coding a protein consisting of 637 amino acids with a predicted molecular mass of 65 kDa. The discrepancy in size on 6% SDS-polyacrylamide gel electrophoresis is considered to be due to its highly acidic nature (pI = 4.18), because COS-7 cells transfected with parchorin cDNA produced a protein with apparent molecular mass of 120 kDa on 6% SDS-polyacrylamide gel electrophoresis. Parchorin is a novel protein that has significant homology to the family of chloride intracellular channels (CLIC), especially the chloride channel from bovine kidney, p64, in the C-terminal 235 amino acids. When expressed as a fusion protein with green fluorescent protein (GFP) in the LLC-PK1 kidney cell line, GFP-parchorin, unlike other CLIC family members, existed mainly in the cytosol. Furthermore, when Cl(-) efflux from the cell was elicited, GFP-parchorin translocated to the plasma membrane. These results suggest that parchorin generally plays a critical role in water-secreting cells, possibly through the regulation of chloride ion transport.  相似文献   

8.
The ontogeny of pigment cells in the eyes of rhesus monkeys was studied by electron microscopy and histochemistry.In 60- to 80-day-old fetuses, the pigment epithelium of the iris and retina has already differentiated whereas stromal melanocytes of the uveal tract differentiate much later. The morphological and histochemical difference between melanocytes of the iris stroma and the choroid suggests that during embryonic development melanocytes migrate from the iris toward the ciliary body and choroid.Similarly, melanosomes of pigmented epithelial cells may have their origin in the epithelium of the anterior layer of the iris, which is metabolically more active than both the posterior layer and the pigment epithelium of the ciliary body and retina.  相似文献   

9.
Ciliated epithelia, especially the ciliary bands used in swimming and filter feeding, of representatives of the following phyla have been investigated: Porifera, Cnidaria, Annelida, Mollusca, Sipuncula, Nemertini, Platyhelminthes, Entoprocta, Ectoprocta, Rotifera, Pterobranchia, Phoronida, Brachiopoda, Echinodermata and Enteropneusta. The trochaea theory predicts that Porifera and Cnidaria have only monociliate cells and lack ciliary bands used in filter-feeding, that the gastroneuralian larvae have downstream-collecting ciliary bands with prototroch and metatroch of compound cilia on multiciliate cells, and that notoneuralian larvae have an upstream-collecting neotroch on monociliate cells. The observations generally fit these predictions and the exceptions are discussed. In all the ciliated epithelia, except that of the sponge larva, each ciliated cell has an accessory centriole perpendicular to the basal body of the cilium and situated on its downstream side.  相似文献   

10.
Critical to the exchange and metabolic functions served by tissues like brain choroid plexi and lung is the coherent development of an epithelial sheet of large surface area in tight apposition to an extensive vascular bed. Here, we present functional experiments in the mouse demonstrating that Sonic hedgehog (Shh) produced by hindbrain choroid plexus epithelium induces the extensive vascular outgrowths and vascular surface area fundamental to choroid plexus functions, but does not induce the more specialized endothelial cell features of fenestrations and bore size. Our findings indicate that these Shh-dependent vascular elaborations occur even in the presence of Vegf and other established angiogenic factors, suggesting either that the levels of these factors are inadequate in the absence of Shh or that a different set of factors may be more essential to choroid plexus outgrowth. Transducing the Shh signal is a perivascular cell—the pericyte—rather than the more integral vascular endothelial cell itself. Moreover, our findings suggest that hindbrain choroid plexus endothelial cells, as compared to other vascular endothelial cells, are more dependent upon pericytes for instruction. Thus, in addition to Shh acting on the progenitor pool for choroid plexus epithelial cells, as previously shown, it also acts on choroid plexus pericytes, and together serves the important role of coordinating the development of two disparate yet functionally dependent structures—the choroid plexus vasculature and its ensheathing epithelium.  相似文献   

11.
Tg737orpk mice have defects in cilia assembly and develop hydrocephalus in the perinatal period of life. Hydrocephalus is progressive and is thought to be initiated by abnormal ion and water transport across the choroid plexus epithelium. The pathology is further aggravated by the slow and disorganized beating of motile cilia on ependymal cells that contribute to decreased cerebrospinal fluid movement through the ventricles. Previously, we demonstrated that the hydrocephalus phenotype is associated with a marked increase in intracellular cAMP levels in choroid plexus epithelium, which is known to have regulatory effects on ion and fluid movement in many secretory epithelia. To evaluate whether the hydrocephalus in Tg737orpk mutants is associated with defects in ion transport, we compared the steady-state pHi and Na+-dependent transport activities of isolated choroid plexus epithelium tissue from Tg737orpk mutant and wild-type mice. The data indicate that Tg737orpk mutant choroid plexus epithelium have lower pHi and higher Na+-dependent HCO3 transport activity compared with wild-type choroid plexus epithelium. In addition, wild-type choroid plexus epithelium could be converted to a mutant phenotype with regard to the activity of Na+-dependent HCO3 transport by addition of dibutyryl-cAMP and mutant choroid plexus epithelium toward the wild-type phenotype by inhibiting PKA activity with H-89. Together, these data suggest that cilia have an important role in regulating normal physiology of choroid plexus epithelium and that ciliary dysfunction in Tg737orpk mutants disrupts a signaling pathway leading to elevated intracellular cAMP levels and aberrant regulation of pHi and ion transport activity. cAMP; ion transport  相似文献   

12.
Many fluid-transporting epithelia possess dead-end, long, and narrow channels opening in the direction to which fluid is being transported (basal infoldings, lateral intercellular spaces, etc.). These channels have been thought to possess geometrical significance as standing-gradient flow systems, in which active solute transport into the channel makes the channel contents hypertonic and permits water-to-solute coupling. However, some secretory epithelia (choroid plexus, Malpighian tubule, rectal gland, etc.) have "backwards" channels opening in the direction from which fluid is being transported. It is shown that these backwards channels can function as standing-gradient flow systems in which solute transport out of the channel makes the channel contents hypotonic and results in coupled water flow into the channel mouth. The dependence of the transported osmolarity (isotonic or hypertonic) on channel radius, length, and other parameters is calculated for backwards channels for values of these parameters in the physiological range. In addition to backwards channels' being hypotonic rather than hypertonic, they are predicted to differ from "forwards" channels in that some restrictions are imposed by the problem of solute exhaustion, and in the presence of a sweeping-in effect on other solutes which limits the solutes that may be transported.  相似文献   

13.
The ultrastructure of the adult frog ciliary epithelium cells has definite regional differences. Cells of ciliary epithelium folds near the iris display morphological features characterizing its barrier and secretory functions which lead to the formation of aqueous humor. These are junctional complexes with tight junctions (zonula occludents) in the apical parts of contacting sides of cells of the inner leaf: a great quantity of mitochondria, ribosomes and various vesicles, well developed endoplasmic reticulum in the cytoplasm, much folded basal surface, gap junctions between cells of external and internal leaflets. In the mammalian inner epithelial layer different cell junctions are known to be arranged in a fixed spatial fashion. Unlike, in the frog's epithelium both zonula adherent and desmosomes may be found in any sequence. Tight junctions are formed during metamorphosis, on the place of focal junctions, whereas gap junctions, referred to earlier as "extended", start functioning between cells just on the very early stages of eye morphogenesis (Dabagyan et al., 1979). The epithelium of the posterior part of the ciliary fold and pars plana of the ciliary body have, in addition, the number of morphological sign indicating the cell involvement in the accomodational function of any eye (i. e. a majority of desmosomes binding all cells together and of zonulae adherentes, well developed intracellular skeleton of tonofilament bundles). These features are characteristic of the whole distal part of ciliary epithelium rather than of the place of attachment of zonula fiber only.  相似文献   

14.
Summary The pineal gland in the possum is represented by a thickening in the wall of the pineal recess. A superficial pineal body and a pineal stalk are characteristically lacking.The ependyma related to the gland is specialized but differs markedly from the lining in other circumventricular organs in form and in surface morphology. Two distinct topographic zones have been recognized. In the middle is a mass of cells which form a prominent knobby-surfaced central zone. These cells are characterized by the absence of cilia, the paucity of microvilli and blebs and the presence of processes which overlap adjacent cells. A surface pattern formed of cell outlines was lacking. It is suggested that the central zone is lined by pinealocytes, supporting cells and the processes of both cell types. Most of the central zone is surrounded by an intermediate zone of variable width. The latter region has been observed to possess a circumventricular organ-type surface morphology. It is sparsely ciliated, almost totally covered by a carpet of microvilli and it exhibits a variety of surface specializations. Supraependymal cells and various transitory supraependymal cell processes are also present.Outside the specialized ependyma is the peripheral zone which like the regular ventricular lining is densely ciliated. Supraependymal processes are found among the clusters of cilia, or rarely, on the surface of the ciliary bed.Season and sex related differences in surface ultrastructure were not observed.  相似文献   

15.
M C Holley 《Tissue & cell》1984,16(2):287-310
The basal apparatuses which anchor the gill cilia in Branchiostoma lanceolatum (Pallas) and the actinopharynx cilia in Calliactis parasitica (Couch) are similar in structure. In C. parasitica the pharynx epithelium and the basal apparatuses are flexible. The basal apparatuses, however, bend in only one direction. This mechanism may permit epithelial flexibility whilst maintaining a similar basal orientation between cilia. In B. lanceolatum the ciliated gill epithelia are mechanically stable but the epithelial surfaces are curved. The basal apparatuses may correct for this curvature, with short rootlets between the distal centrioles (basal bodies) and the cell membranes, so that their cilia also share a common orientation. A common basal orientation between cilia is important for their coordination. The degree of coordination depends upon the function of the cilia; water-propelling cilia are more precisely coordinated than mucus-propelling cilia. Much of the structural diversity of ciliary basal apparatuses in Metazoa may be due to variation in the demands of anchoring functionally different cilia to epithelia which have different structural and mechanical properties.  相似文献   

16.
The expression of the neural cell adhesion molecule L1 was analyzed in several non-neural tissues of the mouse using immunohistochemical and immunochemical techniques. In the adult mouse, L1 immunoreactivity was detectable in the basal and intermediate layers of epidermal and lingual epithelia, in the outer sheath of hair roots and in the single-layered endodermal epithelia of lung, small intestine, and colon. Epithelia of salivary glands also showed L1 immunoreactivity, while endothelial cells of blood vessels did not express detectable levels of L1. The epithelia of the kidney showed expression only in the collecting tubule system. In single-layered kidney epithelia and stratified epithelia, L1 expression was confined to lateral cell contacts and basal infoldings of the epithelial cells but was absent from apical and basal cell surface membranes. Also, in cultured keratinocytes L1 was confined to cell-cell contacts. During development of the epidermis, L1 immunoreactivity was first detectable at the onset of keratinization around embryonic day 16. At this age LI was detectable in the kidney on branching tubules of the ureter. Western blot analysis showed that L1 immunoreactivity in epidermis and kidney appeared as two bands of 190-210 and 210-230 kDa. Northern blot analysis of mRNA from the L1-immunopositive HEL-30 keratinocyte cell line revealed a single band with the expected size of 6 kb. The presence of L1 in epithelia indicates that this molecule may be involved in interactions between epithelial cells and thereby may affect differentiation and maintenance of epithelial tissues.  相似文献   

17.
Four types of blood capillaries of the phoronid Phoronopsis harmeri are described. These are capillaries of the tentacles, of the body, of the stomach plexus, and of the vasoperitoneal tissue. The wall of capillary consists of cells of the coelomic lining, a layer of extracellular matrix, and separate endothelial cells. Myoepithelial coelomic cells of tentacle capillaries contain cross-striated fibers. In capillaries of the body and the stomach plexus, the myofilaments are smooth. In the cells of the wall of vasoperitoneal tissue capillaries, myofilaments are lacking. The cells of the vessel wall of the tentacles, the body, and the vasoperitoneal tissue bear a single cilium. The cells of capillaries of the stomach plexus lack a cilium. The ultrastructure of erythrocytes and amebocytes is described. In the cytoplasm of erythrocytes, there is a basal body. It is assumed that erythrocytes originated from the ciliary cells of the wall of the blood vessels.  相似文献   

18.
The epidermis of Xenoturbella bocki Westblad was studied by scanning and transmission electron microscopy. Two cell types predominate in the epidermis: multiciliated epidermal cells and non-ciliated or monociliated gland cells. A conspicuous feature is the dense ciliary coverage and the numerous gland cell openings. Xenoturbella has a characteristic pattern of axonemal filament termination in the distal tips of their cilia. Each epidermal cilium has the typical 9 + 2 patten through the major part of its shaft. Near the tip there is a shelf at which doublets 4–7 terminate. Doublets 1, 2, 3, 8 and 9 continue into the thinner distal part of the cilium. A similar shelf in cilia is known only from the turbellarian orders Nemertodermatida and Acoela, and hence may be an apomorphic feature which indicates a close relationship between Xenoturbellida, Nemertoder-matida and Acoela. The basal body is provided with a so-called basal foot which has a cross-striated appearance and an expanded distal plate that seems to act as a microtubule organizing center. Approximately 15–25 microtubuli radiate from the endplate of the basal foot to the basal bodies caudally. The arrangement of basal foot and ciliary rootlets in Xenoturbella differs from that of Acoela and related orders in that there are two striated rootlets only (an anterior and a posterior one), rather than one main rootlet and two lateral rootlets.  相似文献   

19.
Summary The salt gland in Spartina foliosa is composed of two cells, a large basal cell and a smaller, dome-shaped cap cell which is located on a neck-like protrusion of the basal cell. There is no cuticular layer separating the salt gland from the mesophyll tissue. The basal cell has dense cytoplasm which contains numerous mitochondria, rod-like wall protuberances, and infoldings of the plasmalemma which extend into the basal cell and partition the basal cell cytoplasm. The protuberances originate on the wall between the basal and the cap cells and are isolated from the basal-cell cytoplasm by the infoldings of the plasmalemma. While the cap cell has no partitioning membrane system or wall protuberances, it resembles the basal cell by having dense cytoplasm and numerous mitochondria.The basal cell seems to be designed for efficient movement of ions toward the cap cell. The long, dead-end extracellular channels in the basal cell of Spartina appear comparable to surface specializations seen in the secreting epithelium of animal cells which carry out solute-linked water transport. The number of mitochondria and their close association with the plasmalemma extensions suggest that they have an important role in the transfer of ions through the basal cell.The accumulated ions would move into the extracellular spaces along an osomotic gradient where the accompanying passive flow of water would move the ions into the cap-cell wall and from there the solution would pass out through the pores in the cuticle.  相似文献   

20.
The development of ciliary folds and zonul of Zinn has been studied in the eyes of the common frog Rana temporaria L. by means of scanning electron microscopy. The development of ciliary folds begins at the stage 45 by the flexure of the external layer in the ciliary zone. At the stage 46 this process involves the internal layer and the folds become two-layered. The zonules of Zinn form before the folds of internal layer of the ciliary epithelium begin to form as separate bundles of fibers. At the stage 45 they are already distinct. Later the ciliary filaments fold in 2 felt-like layers -- zonula which pass from the equatorial lens zone and attach near orbiculum ciliaris. In the place of attachment the margin of zonul repeats the relief of folds, thus attaching to their whole surface, and individual filaments go farther, to orbiculum ciliaris. All these processes take place in they eye prior to the beginning of metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号