首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 Using a combination of observational and experimental approaches, both allocation of resources to reproduction (often called the direct cost of reproduction) and the subsequent long-term costs (the indirect, delayed or demographic cost) associated with reproductive allocation to male and female function in Siparuna grandiflora (Siparunaceae), a tropical dioecious shrub, were examined.
2 The objectives were to determine whether females allocate more biomass or nitrogen per reproductive episode than males, and whether there is a long-term cost of reproduction in terms of subsequent growth or reproduction for either sex. If there is no long-term cost of reproduction, then reproduction may be viewed as free in an evolutionary sense.
3 As is generally the case in dioecious species, females allocated more biomass and nitrogen to reproduction than males. Females also showed delayed costs of reproduction in terms of decreased growth and subsequent reproduction, whereas males did not.
4 The lack of measurable delayed costs in males suggests that with the evolution of dioecy, selection has reduced delayed costs of reproduction in S. grandiflora males. In contrast, females that were prevented from reproducing were able to re-allocate resources to growth, and produced more stem length on average than males. This re-allocation response may have evolved to reduce delayed costs of reproduction in females over time frames longer than that considered in the present study.  相似文献   

2.
Reproduction can have a high resource cost. It has been suggested that greater investments in sexual reproduction by female dioecious plants leads to a lower rate of vegetative growth in females than in males. In this study, we investigated sexual dimorphism in biomass allocation and genet growth of the dioecious clonal shrub, northern prickly ash (Xanthoxylum americanum). The allocation of biomass over the course of one growing season to reproductive tissue, leaves, and growth of aboveground first-year wood, was compared in 18 clones growing in fields and six clones in woods in southeastern Wisconsin during 1985 and 1986. In addition, the number of shoots per clone, and weight of nonfirst-year wood (accumulated biomass) above- and below-ground were estimated. In open field sites, male clones allocated more biomass to new wood and less to reproduction than females, although males allocated more to flowers alone. Accordingly, male clones had significantly more shoots and more accumulated biomass both above- and below-ground than female clones. In the woods, where fruit set was near zero, there were few significant differences between male and female clones in either biomass allocation or accumulated biomass. These results support the hypothesis that the high resource investment in fruit production by females reduces their vegetative growth relative to males.  相似文献   

3.
In dioecious species, females typically allocate more resources to reproduction and incur greater costs of reproduction than males. In gynodioecious species, sex-based differences in reproductive allocation (RA) and costs have been less studied. Such knowledge, however, is relevant to address how females establish and increase in frequency in populations. We examine RA and reproductive costs by comparing fruit set, the proportion of biomass allocated to reproduction, and the responses of fruit set and vegetative growth to shoot defoliation in females and hermaphrodites in gynodioecious Leucopogon melaleucoides. Relative to hermaphrodites, females exhibited a two-fold fruit set advantage. Female fruit set increased proportionately with flower number, but hermaphrodite fruit set was reduced on plants with more flowers. Sex-based differences in allocation to other traits were small. Thus, female RA at flowering was similar to hermaphrodite RA, but was 1.4-fold greater at fruiting. Relative to controls, defoliation reduced fruit set and the percentage of shoots that produced new vegetative growth similarly in both sexes. However, females had a lower proportion of shoots with new growth overall. Further, defoliation on females reduced the dry mass of new growth by 44% compared with controls, whereas hermaphrodites were not affected. These results indicate a trade-off between reproduction and vegetative growth, and greater female costs of reproduction, particularly under resource-limiting conditions. In the absence of compensatory traits to offset higher female reproductive costs, such trade-offs have the potential to retard the spread of females in gynodioecious populations.  相似文献   

4.
The pattern of biomass allocation of males and females and the sex ratio and growth characteristics of plants from three seed-size classes in Silene alba were investigated in a greenhouse study. Seed size significantly affected adult plant size and flower production of both male and female plants, but there was no significant difference in the proportion of males and females emerging in three seed-size categories. Male and female plants differed in the proportion of total biomass allocated to vegetative and reproductive structures and these differences were consistent across all seed-size categories. Males allocated a greater proportion of their biomass to flowers than did females. Female reproductive effort was dependent upon the percentage of flowers producing mature capsules. Only females with greater than 20% fruit set have a higher reproductive expenditure than males. Consequently, female expenditure is potentially greater than males, but is spread out over a longer portion of the growing season. This difference in the timing of reproductive expenditures by males and females allows females to allocate more biomass to growth during the early flowering period and may therefore account for the common pattern in herbaceous perennial dioecious species in which adult females are larger than adult males.  相似文献   

5.
Abstract The patterns of resource allocation are described for a dioecious tropical palm, Chamaedorea tepejilote. Resource allocation was measured by harvesting fifteen plants of C. tepejilote. The relative allocation of biomass in the stem increased with the size of the plant; that in the leaves decreased and that in the other structures remained roughly constant. Female plants showed a greater total reproductive effort, though male plants produced more inflorescences during the flowering season. Both male and female plants allocated more resources to prop root than to hypogeal roots. The annual productivity of reproductive and vegetative parts of C. tepejilote was estimated using allometric relationships for different plant structures and from demographic data obtained from the field. Annually, female plants allocated significantly more resources to leaves than male plants. Yearly productivity of inflorescences was higher for male plants, while female plants had greater total reproductive productivity (inflorescences and fruits). Correlation analysis showed an increase in reproductive effort with plant size, and an inverse relationship between fecundity and probability of survival, fecundity and residual reproductive value, and reproductive effort and life expectancy; these relationships suggested a cost in reproduction. Additionally, mature plants with different growth rates exhibited differences in fecundity: tall plants (>2.5m height) that grew more than 40 cm in height in four years had lower values of fecundity in comparison to plants of slower growth. These data were discussed in the context of the implications in the life history of a dioecious tropical plant.  相似文献   

6.
1. Leaf formation, loss, retention, longevity and biomass on male branches of the evergreen mediterranean shrub Pistacia lentiscus , L. correlated strongly with water-use efficiency inferred from leaf δ13C across a gradient of precipitation on the island of Mallorca, Spain.
2. The correlations suggest that the leaf phenology is under control of drought-induced constraints on the carbon balance.
3. In fruiting female branches, the correlations between the inferred water-use efficiency and number of formed and retained leaves, leaf biomass and leaf longevity were non-significant. Leaf formation was strongly reduced by fruiting and the females compensated the reduced photosynthetic capacity by retaining older leaves for a longer time than male plants.
4. It is suggested that leaf longevity in females is under strong control of resource allocation to fruit formation which is 'overlaid' on the drought-induced carbon stress, which led to the observed longer leaf longevity in females than in males.  相似文献   

7.
Summary Desert populations of the evergreen dioecious shrub Simmondsia chinensis exhibit sex-related leaf and canopy dimorphisms not present in populations from more mesic coastal environments. Leaves on female shrubs have characteristically larger sizes, greater specific weights, and greater water-holding capacity than male leaves in desert habitats. In coastal scrub environments no significant difference is present, with leaf characteristics of both sexes similar to those of desert male shrubs. Desert female shrub canopies are typically relatively open with little mutual branch shading. In male shrubs canopies are more densely branched with considerable mutual shading of branches. Female plants allocate a greater proportion of their vegetative resources to leaves than do male plants. Considering total biomass, male plants allocate 10–15% of their resources (biomass, calories, glucose-equivalents, nitrogen, phosphorus) to reproductive tissues. Female allocation is dependent on seed set. At 100% seed set females would allocate 30–40% of their resources to reproduction, while female reproductive investment would equal that of males at approximately 30% seed set. Sexual dimorphism and the associated physiological characteristics in Simmondsia act as an alternative to differential habitat selection by male and female plants. Female plants respond to limited water resources in desert areas by increasing their efficiency in allocating limited resources to reproductive structures.  相似文献   

8.
Buchloe dactyloides is a perennial dioecious grass in which male and female inflorescences are so strikingly dimorphic that they were originally assigned to different genera. The objective of this paper is to present the results of tests for sex-specific vegetative characters, ecological differences, and sexual niche-partitioning, combining them with prior information on the reproductive biology of Buchloe for an evaluation of the key factors leading to the evolution of dioecy and sexual dimorphism. Field and greenhouse data were collected from Oklahoma and Kansas populations on vegetative characters, allocation to reproduction, and relative growth and competitive success along resource gradients. Except for greater susceptibility to leaf rust by males, there were no significant differences between males and females in vegetative characters, total biomass, or reproductive effort. Field studies of spatial distributions of males and females failed to show any relation to soil, topography, or soil moisture. In a 45-month greenhouse experiment starting at the seedling stage, the relative growth and competitive success of randomly paired individuals showed no evidence for differential competitive success or for niche-partitioning of males and females. The “outcrossing advantage” and subsequent sexual specialization of the female inflorescence appear to be the major factors underlying this dimorphic system.  相似文献   

9.
The sexes of dioecious species may differ in a range of vegetative and reproductive traits as well as in physiological traits. In Siparuna grandiflora, a Neotropical dioecious shrub, we examined differences in leaf-level photosynthesis of different classes of leaf age and, using simulation models, explored whether differences in leaf-level carbon gain led to sex differences in whole-plant daily carbon gain. Male plants had higher photosynthetic capacity at the leaf level. As leaves of both sexes aged their photosynthetic capacity and specific leaf area declined as expected. Simulations of daily carbon gain using the architecturally explicit model Y-Plant and a non-architectural model incorporating a wide range of realistic light environments revealed that the difference in leaf-level photosynthetic capacity did not translate into greater crown-level carbon gain for males. Rather, differences in patterns of allocation to leaf area allow females to achieve higher crown-level carbon gain. The results demonstrate that sex differences at the leaf level do not necessarily predict patterns at the whole-plant level.  相似文献   

10.
Females tend to be smaller than males in woody dioecious plant species, but they tend to be larger in herbs. The smaller size of females in woody species has been attributed to higher reproductive costs, yet no satisfactory explanation has been provided for their larger size in herbs. Because herbs have higher nitrogen concentrations in their tissues than woody plants, and because pollen is particularly rich in nitrogen, we predicted that male growth would be more compromised by reproduction than female growth. To test this hypothesis, we conducted three experiments on the annual dioecious herb Mercurialis annua. First, we compared the timing of reproduction between males and females and found that males started flowering earlier than females; early flowering is expected to compromise growth more than later flowering. Second, we compared plants allowed to flower with those prevented from flowering by experimental debudding and found that males incurred a higher reproductive cost than females in terms of both biomass and, particularly, nitrogen. Third, we grew plants under varying levels of nitrogen availability and found that although sexual size dimorphism was unaffected by nitrogen, females, but not males, decreased their relative allocation to both roots and reproduction under high nitrogen availability. We propose that males deal with the high cost of pollen production in terms of nitrogen by allocating biomass to nitrogen-harvesting roots, whereas females pay for carbon-rich seeds and fruits by investing in photosynthetic organs. Sexual dimorphism would thus seem to be the outcome of allocation to above- versus below-ground sinks that supply resources (carbon versus nitrogen) limiting the female and male reproduction differentially.  相似文献   

11.
In dioecious plant species, males and females are thought to have dissimilar allocation patterns. Females are believed to invest more in reproduction and less in growth and maintenance than males. This differential investment between sexes could result in distinct growth patterns and contrasting survival rates, thereby affecting the sex ratio of a population and the age and size distribution of males and females, possibly leading to habitat segregation according to sex. These effects might become more apparent under particularly limiting conditions, such as in nutrient-deficient soils or in climatically stressed environments. To verify these predictions, growth patterns, microsite characteristics, and age and size distribution of male and female individuals were compared, and population sex ratio was determined in three populations of the dioecious shrub Juniperus communis var. depressa (Cupressaceae, Pinophyta) along a short latitudinal gradient on the eastern coast of Hudson Bay (Northern Québec, Canada). We found that the northernmost population had a male-biased sex ratio, but that the southernmost one had a higher proportion of females. Our results failed to reveal any significant differences in radial growth patterns, mean sensitivity, annual elongation of the main axis, and size and age frequency distribution between males and females in any population. Furthermore, there was no evidence of microhabitat segregation according to sex as indicated by the lack of differences in the physicochemical characteristics of the substrate under males and females. Clearly, the expected ecological consequences of a presumed greater investment of females in reproduction were not apparent even under the very stressful conditions prevailing on subarctic dunes. Many factors could reduce differences in the cost of reproduction between males and females, such as the number and quality of reproductive structures produced annually by individuals of each sex, the possible photosynthetic activity of the immature female cones, and the complexity of the source/sink relationship within individuals. Alternatively, there may be no differences between sexes in their reproductive investment.  相似文献   

12.
We examined sexual dimorphism in reproductive allocation and its effects on growth and subsequent reproduction in a natural population of the dioecious woody shrub Lindera benzoin (L.) Blume. In addition to comparing natural patterns of growth and reproduction in a marked population of 251 females and 87 males, we experimentally examined the effect of reduced reproduction on future growth and reproduction in female plants and examined sexual dimorphism in carbon/nutrient balance. Our results suggest that females of L. benzoin bear greater reproductive costs in terms of both biomass and minerals. These costs were measurable in terms of current biomass and allocation of nitrogen to reproduction, as well as subsequent growth, reproduction, and tissue carbon/nutrient balance. Based upon the results of a fruit-thinning experiment and path analysis, fruit production in 1991 appeared to have direct negative effects on fruit production in 1992, an effect that was not necessarily mediated through effects on plant growth. We discuss our results in the context of other intrinsic and extrinsic factors that can influence growth, reproductive costs, and mortality in this species.  相似文献   

13.
Females of dioecious species usually have higher reproductive effort than males because they produce fruits in addition to flowers. Since females have higher reproductive effort, they are expected to be more negatively affected than males by low resource availability. We tested that assumption by growing females and males of Silene latifolia under low levels of light, water, nitrogen, phosphorus, and potassium. Gas exchange of the sexes did not respond differently to low resource availability; higher female reproductive effort relative to males did not differentially affect their ability to assimilate carbon. However, male photosynthesis rates and stomatal conductances were slightly, but consistently, higher than those of females. The intersexual difference in photosynthesis rate may be a proximate result of reproduction if females translocate nutrients, particularly nitrogen, from their leaves to developing fruits. Alternatively (or perhaps additionally), higher male photosynthesis and stomatal conductances relative to females may be the ultimate result of sexual selection. This could be the case if 1) reproductive effort as estimated by biomass allocation is misleading and males actually invest more in reproduction than females, or 2) females experience stronger selection than males to conserve water late in the growing season, when soil moisture is likely to be low but females need to complete fruit maturation. Our results indicated that females had slightly lower leaf nitrogen but higher photosynthetic water-use efficiency than males, so it is possible that both proximate and ultimate factors are operating simultaneously to cause lower female photosynthesis rates.  相似文献   

14.
Females of woody dioecious species usually devote more resources to reproduction than males. This may lead to a decrease in female survival and growth. The costs of reproduction, however, can be lightened through a number of mechanisms, as for example avoiding the temporal coincidence of reproduction and vegetative growth. The aim of this study was to evaluate whether males and females of P. lentiscus differ in the timing of their vegetative growth, and to assess whether the sequencing of vegetative growth and reproduction reduces reproductive costs. We monitored phenology in males and females. We also compared male and female allocation of nutrients and biomass in the branch, and the developmental stability of the growing shoots. We did this both prior to and at the end of the fruiting period. Males and females showed similar vegetative and flowering phenologies. Males invested more biomass in flowering, but the sexes showed equal vegetative biomass and nutrient content prior to the fruiting period. In female branches, no trade-off was found between fruit load and current-year vegetative growth. In P. lentiscus, avoiding the overlap of flowering, vegetative growth and fruiting probably contributes to reduce the immediate costs of reproductive efforts, both in males and females.  相似文献   

15.
Allocation to vegetative growth and sexual reproduction was investigated throughout the growing season in the dioecious sedge, Carex picta, under natural conditions and following experimental manipulations. Measurements taken on unmanipulated plants showed that the sexes did not differ in the total amount of biomass they allocated to either growth or reproduction. The relatively equal investment in reproduction by the two sexes is contrary to other studies, the majority of which show greater investment in reproduction by females. Two features of the reproductive biology of C. picta may account for the equal investment: the fruit are relatively inexpensive because they are uniovulate and nonfleshy, and the stamens are relatively expensive because C. picta is wind pollinated. In contrast to the lack of differences in the amount of allocation, there were differences between the sexes in the timing of allocation to growth and reproduction: males allocated more to reproduction and less to growth up to the time of flowering, whereas females showed this pattern during the time of fruit maturation. Defoliation and inflorescence removal experiments showed that a trade-off within plants between growth and reproduction does exist. In addition, the defoliation experiment revealed a difference in the response of the two sexes: defoliated tillers on males showed a reduction in growth, whereas defoliated tillers on females did not. Overall, the data support the idea that differences in the timing of reproductive expenditure are as important as the amount of expenditure in determining many aspects of the life history strategies of the two sexes.  相似文献   

16.
Aims We explore the possible role of leaf size/number trade-offs for the interpretation of leaf size dimorphism in dioecious plant species.Methods Total above-ground biomass (both male and female) for three herbaceous dioecious species and individual shoots (from both male and female plants) for three woody dioecious species were sampled to record individual leaf dry mass, number of leaves, dry mass of residual above-ground tissue (all remaining non-leaf biomass), number of flowers/inflorescences (for herbaceous species) and number of branches.Important findings For two out of three woody species and two out of three herbaceous species examined, male plants produced smaller leaves but with higher leafing intensity—i.e. more leaves per unit of supporting (residual) shoot tissue or plant body mass—compared with females. Male and female plants, however, did not differ in shoot or plant body mass or branching intensity. We interpret these results as possible evidence for a dimorphic leaf deployment strategy that promotes both male and female function, respectively. In male plants, capacity as a pollen donor may be favored by selection for a broadly spaced floral display, hence favoring relatively high leafing intensity because this provides more numerous axillary meristems that can be deployed for flowering, thus requiring a relatively small leaf as a trade-off. In one herbaceous species, higher leafing intensity in males was associated with greater flower production than in females. In contrast, in female plants, selection favors a relatively large leaf, we propose, because this promotes greater capacity for localized photosynthate production, thus supporting the locally high energetic cost of axillary fruit and seed development, which in turn requires a relatively low leafing intensity as a trade-off.  相似文献   

17.
Males and females of dioecious plant species often differ in their reproductive investment. Such differences frequently result in differential demographic costs represented by lower growth, survival, and/or frequency of reproduction, and/or by more variable reproductive effort through time for females. We present the results of a study on Corema conradii, a rare dioecious shrub of the coastal dune heathlands of northeastern North America. We estimated the reproductive investment of both males and females, determined their age structure, and compared their spatial patterns in a population at ?les-de-la-Madeleine, Quebec. We also determined the sex ratio of the four populations known to occur on the islands. Males invested more in reproduction at flowering, but when fruit production was considered, female reproductive investment was higher in terms of biomass, Mg, and Ca, but not in terms of N, P, and K. The age frequency distribution of males and females did not differ significantly from one another. The population dispersion pattern was contagious, with patches of similar-age individuals. There was no spatial segregation between males and females, although the sex ratio varied somewhat spatially. Females did not start reproducing at a later age than males and did not appear to have a shorter longevity. However, the crown and radial growth rates of females were lower than those of males. When estimated by the crown intercept method, the sex ratio of all four populations was male biased. However, because males had a higher crown growth rate, genet sex ratio was in fact balanced. Higher investment in reproduction was associated with a lower growth rate, which represents a differential cost of reproduction according to sex in this species.  相似文献   

18.
Based on the general tendency for females of dioecious plants to pay higher reproductive cost than males, it has been predicted that females should have much more reduced reproductive outputs and diminished vegetative production than males in energy-limited habitats. Nevertheless, this prediction has rarely been directly investigated. We investigated altitudinal changes in reproductive biomass and shoot production, normalized by plant size, for females and males of a shrub willow, Salix reinii, on Mt. Hakkoda, northeast Japan. Females maintained higher reproductive biomass than males at all altitudes; however, reproductive allocation for both sexes tended to decrease at a similar rate with an increase in altitude. Moreover, females vegetatively produced at the same rate as males at all altitudes. These findings suggest that females have a mechanism to compensate for the extra investment in reproduction irrespective of a changing environment. Shoot production did not change with altitude, suggesting that S. reinii gave priority to vegetative investment at the cost of reproductive output at higher altitudes. Inconsistent with general predictions, females did not respond more sensitively than males to severe environmental conditions in either reproductive allocation or shoot production, despite much higher resource investment in reproduction.  相似文献   

19.
Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the soil), the water content of the soil was higher for the female plants had than for the male plants. Conclusions Sex-differential timing of investment in reproduction and differential availability and use of resources from the soil (particularly water) are factors that probably offset the costs of reproduction in the above-ground growth in males and females of H. peploides. The results suggest that the patterns of spatial segregation of the sexes observed in H. peploides may contribute to maximize each sex's growth and reproduction.  相似文献   

20.
Summary We examined the influence of differential reproductive frequency between the sexes on tertiary (phenotypic) sex ratios in the the dioecious tree Nyssa sylvatica (Nyssaceae). Reproduction was evaluated in relation to sex, size and canopy exposure using flowering data collected from 1229 marked trees over a four year period. For subsets of each population we used data on flower number, fruit crop size, fruit/flower ratios, and individual flower and fruit mass to compare biomass invested in reproductive structures of males and females. We also examined seasonal changes in stem nitrogen and soluble carbohydrate content in relation to flower and fruit production for trees of each sex. Our results indicate that: 1) Male-biased tertiary sex ratios could be explained by more frequent reproduction by male trees; 2) Estimated secondary sex ratios based on sums of all known males and females were not significantly different from 1:1; 3) Flowering frequency of males and females was significantly related to plant size (DBH) and exposure of the canopy to light; 4) Estimtes of reproductive biomass allocation ranged from 1.36 to 10.8 times greater for females relative to males; 5) Flower production was related to stem nutrient status for both sexes, but nutrient depletion and its effect on subsequent flowering was much more pronounced for female trees. We conclude that less frequent flowering by female trees may result from depletion of stored reserves, and that differential flowering frequency in N. sylvatica may ultimately reduce apparent sexual differences in the costs of reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号