首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Summary Grapevine fanleaf nepovirus (GFLV) is responsible for the economically significant court-noué disease in vineyards. Its genome is made up of two single-stranded RNA molecules (RNA1 and RNA2) which direct the synthesis of polyproteins P1 and P2 respectively. A chimeric coat protein gene derived from the C-terminal part of P2 was constructed and subsequently introduced into a binary transformation vector. Transgenic Nicotiana benthamiana plants expressing the coat protein under the control of the CaMV 35S promoter were engineered by Agrobacterium tumefaciens-mediated transformation. Protection against infection with virions or viral RNA was tested in coat protein-expressing plants. A significant delay of systemic invasion was observed in transgenic plants inoculated with virus compared to control plants. This effect was also observed when plants were inoculated with viral RNA. No coat protein-mediated cross-protection was observed when transgenic plants were infected with arabis mosaic virus (ArMV), a closely related nepovirus also responsible for a court-noué disease.Abbreviations GFLV-F13 grapevine fanleaf virus F13 isolate - ArMV arabis mosaic virus - CP coat protein - MS Murashige and Skoog - NPTII neomycin phosphotransferase II - CaMV cauliflower mosaic virus - ELISA enzyme linked immunosorbent assay - VPg genome linked viral protein - TMV tobacco mosaic virus - PVX potato virus X - PVY potato virus Y - TRV tobacco rattle virus - +CP CP expressing - -CP control plant, not expressing CP - CPMP coat protein-mediated protection - CPMCP coat crotein-mediated cross protection  相似文献   

2.
Cross-protection experiments were performed in Chenopodium quinoa using arabis mosaic virus (ArMV) and grapevine fanleaf virus (GFLV) isolates. Two factors were specially studied, namely the time interval and the distance between the two inoculations, respectively, with the hypovirulent isolate and with the hyper virulent challenge isolale. ArMV-S clearly protected C. quinoa from a super infection with GFLV-F13 as shown by a diminution, or even suppression, of the synthesis of the coat protein and the nucleic acids of the GFLV-F13 isolate. In the homologous interaction between GFLV isolates (GH and F13), protection was also observed. In the interaction between GFLV-GH and ArMV-862, by contrast, symptoms were typical of the hyper virulent ArMV-862 and the amount of coat protein of ArMV-862 was normal.  相似文献   

3.
Maize streak virus-resistant transgenic maize: a first for Africa   总被引:1,自引:0,他引:1  
In this article, we report transgene-derived resistance in maize to the severe pathogen maize streak virus (MSV). The mutated MSV replication-associated protein gene that was used to transform maize showed stable expression to the fourth generation. Transgenic T2 and T3 plants displayed a significant delay in symptom development, a decrease in symptom severity and higher survival rates than non-transgenic plants after MSV challenge, as did a transgenic hybrid made by crossing T2 Hi-II with the widely grown, commercial, highly MSV-susceptible, white maize genotype WM3. To the best of our knowledge, this is the first maize to be developed with transgenic MSV resistance and the first all-African-produced genetically modified crop plant.  相似文献   

4.
5.
6.
Since their discovery, single‐domain antigen‐binding fragments of camelid‐derived heavy‐chain‐only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode‐transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell‐to‐cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.  相似文献   

7.
We evaluated the concept for protection of plants against virus infection based on the expression of single-chain Fv (scFv) fragments in the apoplasm or cytosol of transgenic plants. Cloned cDNA of a tobacco mosaic virus (TMV)-specific scFv antibody, which binds to intact virions, was integrated into the plant expression vector pSS and used for Agrobacterium-mediated transformation of Nicotiana tabacum cv. Xanthi-nc. Regenerated transgenic tobacco plants were analysed by northern blot, western blot and ELISA to assess expression and functionality of recombinant antibody (rAb) fragments. A significant increase of scFv levels in T1 progeny was obtained for plants secreting apoplastic scFv antibodies but not for scFvs expressed in the cytosol. Bioassays revealed that T1 progeny producing scFvs in different plant cell compartments showed different levels of resistance upon inoculation with TMV. The most dramatic reduction of necrotic local lesion numbers upon virus infection was observed in T1 plants expressing scFv fragments in the cytosol. Infectivity could be reduced by more than 90%, despite the observation that protein expression levels for functional scFv antibodies were very low. Furthermore, upon inactivation of the N-resistance gene at elevated temperature, a significant portion of the T1 progenies inhibited systemic virus spread, indicating that expression of TMV-specific cytosolic scFvs confers virus resistance in these transgenic plants. Moreover, inoculation of protoplasts isolated from transgenic and non-transgenic tobacco plants with TMV-RNA demonstrated that accumulation of virus particles is affected by cytosolic scFv expression.  相似文献   

8.
The plant hormone abscisic acid (ABA) participates in the control of several important physiological processes in plants such as stomata regulation, seed dormancy and stress tolerance. A new strategy was developed to study these phenomena by blocking abscisic acid with intracellularly expressed specific single-chain variable fragment (scFv) antibodies. Here evidence is presented that the expression of single-chain Fv antibodies against abscisic acid in the endoplasmic reticulum of transgenic tobacco cells leads to a wilty phenotype. Stomatal conductance is increased at high CO2 concentrations dependent on the level of antibody expression in leaves. Symptoms of abscisic acid deficiency were generated in the transformants although they have even higher levels of abscisic acid than wild-type plants.  相似文献   

9.
10.
With the long-term goal of generating CMV-resistant transgenic plants using antibody genes, a single-chain variable fragment (scFv) antibody that binds to the cucumber mosaic virus was isolated from a scFv phage display library by four rounds of affinity selection with CMV-Mf as an antigen. The scFv has the identical binding specificity to CMV as a monoclonal antibody that is generated by the hybridoma fusion technique, and recognized purified preparations of CMV isolates belonging to either subgroup I or II in immunoblotting. The nucleotide sequences of the recombinant antibody showed that a heavy chain variable region (V(H)) gene belonged to the VH3 subgroup and the kappa light chain variable region (V kappa) came from the Vkappa4 subgroup. Our results demonstrate that the scFv phage display library, an alternative approach to the traditional hybridoma fusion technique, has a potential applicability in the study of plant virus and plant pathology.  相似文献   

11.
Immunomodulation is a means to modulate an organism's function by antibody production to capture either endogenous or exogenous antigens. This method was applied to plants to repress the function of gibberellins (GAs), a class of phytohormones responsible for plant elongation, by anti-bioactive GA antibodies. Two different antibodies were produced in Arabidopsis as single-chain variable fragment (scFv) fused to green fluorescent protein (GFP) with four different subcellular localizations: endoplasmic reticulum (ER), cytosol, apoplastic space or the outer surface of the plasma membrane. When targeting scFv-GFP to ER, plants showed the highest accumulation of scFv-GFP, with binding activity, strong GFP fluorescence in ER-derived compartments and mild but clear GA-deficient phenotypes, including a smaller leaf size, delayed bolting, shorter inflorescence length and decreased germination. Plants expressing scFv-GFP in ER responded to exogenous GA4 and contained 15–40 times greater endogenous GA4 than wild-type plants. They also showed increased gene expression for GA3ox1 , GA20ox1 and GA20ox2 , but decreased expression for GA2ox1 , which are feedback and feedforward regulated by GA signalling, respectively. These results suggest that the level of free functional GA4 decreased when trapped in the ER with scFv to the extent that mild GA-deficient phenotypes were created. A dramatic increase in the total sum of GA4 (free plus scFv-GFP bound) was detected as a result of the up-regulation of GA biosynthesis (feedback regulated), and a decrease in GA4 catabolism as a result of protection by scFv-GFP binding. This study demonstrates that the use of immunomodulation to inhibit the action of bioactive GAs is an effective method of creating GA-deficient plants.  相似文献   

12.
Citrus tristeza virus (CTV) causes one of the most destructive viral diseases of citrus worldwide. Generation of resistant citrus genotypes through genetic engineering could be a good alternative to control CTV. To study whether production of single-chain variable fragment (scFv) antibodies in citrus could interfere and immunomodulate CTV infection, transgenic Mexican lime plants expressing two different scFv constructs, separately and simultaneously, were generated. These constructs derived from the well-referenced monoclonal antibodies 3DF1 and 3CA5, specific against CTV p25 major coat protein, whose mixture is able to detect all CTV isolates characterized so far. ScFv accumulation levels were low and could be readily detected just in four transgenic lines. Twelve homogeneous and vigorous lines were propagated and CTV-challenged by graft inoculation with an aggressive CTV strain. A clear protective effect was observed in most transgenic lines, which showed resistance in up to 40–60% of propagations. Besides, both a delay in symptom appearance and attenuation of symptom intensity were observed in infected transgenic plants compared with control plants. This effect was more evident in lines carrying the 3DF1scFv transgene, being probably related to the biological functions of the epitope recognized by this antibody. This is the first report describing successful protection against a pathogen in woody transgenic plants by ectopic expression of scFv recombinant antibodies.  相似文献   

13.
14.
Experiments were conducted under greenhouse conditions to investigate the effects of enhanced UV-B radiation (280 to 320 nm) on height, fresh and dry weights, leaf chlorophyll and carotenoids, CO2 uptake rates, and Hill activity in soybean ( Glycine max L. cv. Bragg). Plants were exposed for 6 h continuously from midmorning to midafternoon each day to UV-B radiation which was provided by Westinghouse FS-40 sun lamps filtered with 0.127-mm cellulose acetate film (UV-B enhanced) or 0.127-mm Mylar S film (UV-B Mylar control). Three different UV-B enhanced radiation levels were tested: 1.09 (treatment T1), 1.36 (treatment T2), and 1.83 (treatment T3) UV-B sun equivalent units (UV-Bsec) where 1 UV-Bsec= 15.98 mW·m−2 of solar UV-B obtained by applying EXP -[(α-265)/21]2, a weighting function that simulates the DNA absorption spectrum, to the UV-B lamp systems. These UV-B levels correspond to a calculated decrease in stratospheric ozone content of 6%, 21%, and 36% for treatment T1, T2, and T3, respectively.
Daily exposure of soybean plants to UV-B radiation significantly decreased height, fresh and dry weights, leaf chlorophyll and carotenoid contents, and CO2 uptake rates. Leaf pigment extracted in 80% acetone from UV-B-treated soybean plants showed considerable increase in absorption in the wavelength region of 330 to 400 nm with increased UV-B radiation levels. Chloroplast preparations from leaves of T2 and T3 plants showed significant reductions in Hill reaction measurements.  相似文献   

15.
Summary To facilitate the development of transgenic grapevines that are resistant to grapevine fanleaf virus (GFLV), grapevine leafroll-associated closterovirus (GLRaV-3) and crown gall diseases, we developed a rapid system for regenerating root-stocks: Couderc 3309, Vitis riparia ‘Gloire de Montpellier’, Teleki 5C, Millardet et De Grasset 101-14, and 110 Richter via somatic embryogenesis. Embryo culture and grape regeneration were accomplished with four media. Embryogenic calluses from anthers were induced in the initiation medium [MS basic medium containing 20 g sucrose per L, 1.1 mg 2,4-dichlorophenoxyacetic acid (2,4-D) per L, 0.2 mg N6-benzyladenine (BA) per L, and 0.8% Noble agar). The percentage of anthers that developed into embryogenic calli ranged from 2 to 16.3% depending on the rootstock. Calluses with early globular stage embryos were cocultivated with Agrobacterium tumefaciens strain C58Z707 containing the gene constructs of interest. The genes were sense-oriented translatable and antisense coat protein genes from GFLV and GLRaV-3, a truncated HSP90-related gene of GLRaV-3 (43K), and a virE2 del B gene from A. tumefaciens strain C58. Twenty independent transformation experiments were performed on five rootstocks. After 3–4 mo. under kanamycin selection, secondary embryos were recovered on differentiation medium (1/2 MS salts with 10 g sucrose per L, 4.6 g glycerol per L, and 0.8% Noble agar). Embryos that were transformed were regenerated on a medium containing MS salts with 20 g sucrose per L, 4.6 g glycerol per L, 1 g casein hydrolysate per L, and 0.8% Noble agar. Elongated embryos were then transferred to a rooting medium supplemented with 0.1 mg BA per L, 3 g activated charcoal per L, 1.5% sucrose, and 0.65% Bacto agar. A total of 928 independent putative transgenic plants were propagated in the greenhouse. All plants were tested for neomycin phosphotransferase II expression by enzyme-linked immunosorbent assay (ELISA). The presence of transgenes was assessed by polymerase chain reaction and Southern analysis. ELISA revealed various levels of expression of GFLV coat protein in transgenic plants of Couderc 3309. The transgenic rootstocks that have been generated are being screened to determine whether transgenes have conferred resistance to the virus and crown gall diseases.  相似文献   

16.
A survey of grapevine viruses present in the region of Calabria (southern Italy) was carried out, and the sanitary selection was conducted on various indigenous varieties. Serological (ELISA) and molecular (multiplex RT‐PCR) tests were used to detect the viruses included in the Italian certification programme: Arabis mosaic virus (ArMV), Grapevine fanleaf virus (GFLV), Grapevine leafroll associated virus 1 (GLRaV‐1), Grapevine leafroll associated virus 2 (GLRaV‐2), Grapevine leafroll associated virus 3 (GLRaV‐3), Grapevine virus A (GVA), Grapevine virus B (GVB) and Grapevine fleck virus (GFkV). The frequency with which the above viruses have been detected was 37.4, 32.6, 12.8, 7.7, 7.3, 1.9 and 0.3%, respectively, for GVA, GLRaV‐3, GFLV, GFKV, GLRaV‐1, GLRaV‐2 and GVB. ArMV was never found. The sanitary selection allowed for the detection of 6 putative clones of ‘Arvino’, 2 of ‘Magliocco dolce’ and 2 of the rootstock ‘17–37’ free of the above‐mentioned viruses. The necessary process for the commercialization of these clones as ‘certified’ propagation material was accomplished, and their official approval by the Italian Ministry of Agriculture is currently in progress.  相似文献   

17.
For some crops, the only possible approach to gain a specific trait requires genome modification. The development of virus‐resistant transgenic plants based on the pathogen‐derived resistance strategy has been a success story for over three decades. However, potential risks associated with the technology, such as horizontal gene transfer (HGT) of any part of the transgene to an existing gene pool, have been raised. Here, we report no evidence of any undesirable impacts of genetically modified (GM) grapevine rootstock on its biotic environment. Using state of the art metagenomics, we analysed two compartments in depth, the targeted Grapevine fanleaf virus (GFLV) populations and nontargeted root‐associated microbiota. Our results reveal no statistically significant differences in the genetic diversity of bacteria that can be linked to the GM trait. In addition, no novel virus or bacteria recombinants of biosafety concern can be associated with transgenic grapevine rootstocks cultivated in commercial vineyard soil under greenhouse conditions for over 6 years.  相似文献   

18.
Brachypodium distachyon is a promising model system for the structural and functional genomics of temperate grasses because of its physical, genetic and genome attributes. The sequencing of the inbred line Bd21 ( http://www.brachypodium.org ) started in 2007. However, a transformation method remains to be developed for the community standard line Bd21. In this article, a facile, efficient and rapid transformation system for Bd21 is described using Agrobacterium -mediated transformation of compact embryogenic calli (CEC) derived from immature embryos. Key features of this system include: (i) the use of the green fluorescent protein (GFP) associated with hygromycin selection for rapid identification of transgenic calli and plants; (ii) the desiccation of CEC after inoculation with Agrobacterium ; (iii) the utilization of Bd21 plants regenerated from tissue culture as a source of immature embryos; (iv) the control of the duration of the selection process; and (v) the supplementation of culture media with CuSO4 prior to and during the regeneration of transgenic plants. Approximately 17% of CEC produced transgenic plants, enabling the generation of hundreds of T-DNA insertion lines per experiment. GFP expression was observed in primary transformed Bd21 plants (T0) and their progeny (T1). The Mendelian inheritance of the transgenes was confirmed. An adaptor-anchor strategy was developed for efficient retrieval of flanking sequence tags (FSTs) of T-DNA inserts, and the resulting sequences are available in public databases. The production of T-DNA insertion lines and the retrieval of associated FSTs reported here for the reference inbred line Bd21 will facilitate large-scale functional genomics research in this model system.  相似文献   

19.
Eto J  Suzuki Y  Ohkawa H  Yamaguchi I 《FEBS letters》2003,550(1-3):179-184
An anti-chlorpropham single-chain variable-fragment (scFv) gene was introduced into Arabidopsis in a manner to express the antibody fragment in each of four different subcellular compartments. The accumulation of scFv in transgenic plants was detected by targeting the fragment in the endoplasmic reticulum or apoplastic space, or by expressing the fragment as a glycosylphosphatidylinositol-anchored protein, while no accumulation could be detected by targeting the fragment in the cytosol. Transgenic plants accumulating the scFv gene at a high level in the endoplasmic reticulum had enhanced tolerance to chlorpropham in comparison with the non-transformants.  相似文献   

20.
We tested the hypothesis that membrane-anchored anti-viral antibodies can confer viral resistance to transgenic plants. A heterologous expression system was developed for plasma membrane targeting of anti-viral antibodies using mammalian transmembrane domains. A tobacco mosaic virus (TMV) neutralizing single-chain Fv antibody fragment (scFv24) was targeted to the endoplasmic reticulum and integrated into the plasma membrane of tobacco cells, using mammalian signal peptides and membrane receptor transmembrane domains. The human platelet-derived growth factor receptor (PDGFR) transmembrane domain or the T-cell receptor -domain (TcR) transmembrane domain was fused to the C-terminus of TMV-specific scFv24 to target expression of scFv24 as an extracellularly facing plasma membrane protein. Western blot and ELISA analyses were carried out to confirm functional expression of the recombinant fusion proteins scFv24-PDGFR and scFv24-TcR in transgenic tobacco suspension cultures and transgenic plants. Immunofluorescence and electron microscopy showed that the TcR transmembrane domain targeted scFv24 to the tobacco plasma membrane. Bioassays of viral infection showed that transgenic tobacco plants expressing scFv24-TcR were resistant to TMV infection. These results demonstrated that membrane anchored anti-viral antibody fragments are functional, can be targeted to the plasma membrane in planta and are a novel approach for engineering disease-resistant crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号