首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
液泡膜转运蛋白在植物细胞代谢中的作用   总被引:1,自引:0,他引:1  
乔磊  崔继哲 《生命科学》2009,(2):330-334
液泡是植物细胞的一个多功能细胞器,其主要通过膜运输系统执行功能。液泡膜转运蛋白可以控制细胞内物质的储存和运输,参与细胞内的应答胁迫反应,隔离毒性离子,防止细胞质受害,调节Ca^2+浓度和pH,维持细胞内环境的稳定。本文主要对液泡膜转运蛋白在营养储存、逆境胁迫、细胞内环境稳态中发挥的作用进行综述,以期为进一步阐释液泡复杂生理功能提供一些借鉴。  相似文献   

2.
冯言  刘马峰  程安春 《微生物学报》2016,56(7):1061-1069
几乎所有细菌的生长都离不开铁元素。在有氧的环境中,三价铁离子几乎无法被细菌直接利用。但是在宿主胃肠道中,铁元素主要以可溶性的亚铁离子形式存在,它们可通过革兰氏阴性菌外膜直接进入胞周质,在周质通过亚铁离子转运系统,将铁离子转运至胞浆供细菌利用。绝大多数阴性菌主要是通过Feo转运系统利用亚铁离子,大肠杆菌的Feo转运系统由feoA、feoB和feoC3个基因组成。除Feo转运系统外,还发现Yfe转运系统、Efe转运系统、Sit转运系统等。本文重点介绍革兰氏阴性菌Feo转运系统的组成及作用机制,以期为进一步研究细菌亚铁离子的转运机制提供参考。  相似文献   

3.
铁离子是鱼腥蓝细菌PCC7120进行呼吸作用、光合作用和固氮作用中相关酶的重要辅基之一,缺铁将严重影响蓝细菌的生存.富氧的生态环境中铁通常以不溶的Fe3+形式存在,不易被细胞吸收利用.低铁条件下,鱼腥蓝细菌PCC7120分泌能螯合铁离子的嗜铁素,通过外膜上相应的转运体将嗜铁素-铁复合物转运到细胞内.综述了近年来在嗜铁素的种类及其生物合成途径、铁吸收系统的组成和功能等方面的最新进展,分析了铁吸收系统的调控机制,为进一步开展鱼腥蓝细菌铁吸收机制的研究提供依据.  相似文献   

4.
铁是机体必需微量元素,参与机体合成血红蛋白、肌红蛋白及多种酶的组成和功能发挥,对维持生命和健康至关重要。近四分之一的世界人口遭受铁缺乏或缺铁性贫血的威胁。此外,部分人群还存在铁过载问题,以脏器铁离子蓄积为主要病理改变的遗传性血色病,其在欧美发病率高达1/200,在中国也有报道。血色病后期多诱发肝脏、胰腺及心脏的功能衰退。铁过少或过多对健康都会造成严重危害,机体需要复杂而精密的调控体系维持铁稳态平衡。铁代谢主要包括小肠吸收、肝脏储存、血液转运、巨噬细胞再循环以及周身细胞利用。过去十多年是铁代谢研究的黄金时期,先后发现众多铁稳态代谢相关基因。该文综述了近年来哺乳动物铁代谢领域的研究进展,并对铁稳态代谢中存在的问题进行了初步讨论,为理解和进一步深入研究铁代谢分子机制提供参考。  相似文献   

5.
植物铁吸收、转运和调控的分子机制研究进展   总被引:4,自引:0,他引:4  
铁是植物正常生命活动所必需的微量矿质元素,铁离子的吸收、转运和利用是一个复杂的过程,很多基因参与了这一过程。本文对近10年来发现和分离的参与植物铁吸收、转运及调控的基因研究进展进行了综述。根据最近的研究结果,提出了植物控制铁吸收的分子调控模式(机理I)。  相似文献   

6.
铁是植物正常生命活动所必需的微量矿质元素, 铁离子的吸收、转运和利用是一个复杂的过程, 很多基因参与了这一过程。本文对近10年来发现和分离的参与植物铁吸收、转运及调控的基因研究进展进行了综述。根据最近的研究结果, 提出了植物控制铁吸收的分子调控模式(机理I)。  相似文献   

7.
高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展   总被引:12,自引:1,他引:11  
盐胁迫是影响农业生产的重要环境因素之一。本文对植物Na 吸收的机制和途径、Na 在植物体内的长距离转运以及细胞内Na 稳态平衡的研究进展进行了概述。参与植物Na 吸收与转运的蛋白和通道可能包括HKT、LCT1、AKT和NSCC等。其中,HKT是植物体内普遍存在的一类转运蛋白,能够介导Na 的吸收,其结构中的带电氨基酸残基对于其离子选择性有着非常明显的影响。LCT1是从小麦中发现的一类能够介导低亲和性阳离子吸收的蛋白,然而在典型的土壤Ca2 浓度下LCT1并不能发挥吸收Na 的功能。AKT家族的成员在高盐环境下可能也参与了Na 的吸收。目前虽然还没有克隆到编码NSCC蛋白的基因,但是NSCC作为植物吸收Na 的主要途径的观点已被广泛接受。SOS1和HKT参与了Na 在根部与植株地上部的长距离转运过程,它们在木质部和韧皮部的Na 装载和卸载中发挥重要作用,从而影响植物的抗盐性。另外,由质膜Na /H 逆向转运蛋白SOS1、蛋白激酶SOS2以及Ca2 结合蛋白SOS3组成的SOS复合体对细胞的Na 稳态具有重要的调节作用,单子叶和双子叶植物之间的这种调节机制在结构和功能上具有保守性。SOS复合体与其它位于质膜或液泡膜上的Na /H 逆向转运蛋白以及H 泵一起调节着细胞的Na 稳态。  相似文献   

8.
酵母和植物的锌转运系统及其调控   总被引:1,自引:0,他引:1  
王祥  李鹏  印莉萍 《植物学通报》2007,24(6):799-806
锌是所有生物体必需的微量元素之一,是多种蛋白的辅酶并参与催化生物体内的一些重要生化反应。生物体为了维持细胞内适当的锌浓度以保证其正常功能而进化出了复杂的锌转运及调控系统。本文主要论述酵母和植物中的锌转运系统及其调控,以及锌吸收的分子标记和QTL位点分析。  相似文献   

9.
锌是所有生物体必需的微量元素之一, 是多种蛋白的辅酶并参与催化生物体内的一些重要生化反应。生物体为了维持细胞内适当的锌浓度以保证其正常功能而进化出了复杂的锌转运及调控系统。本文主要论述酵母和植物中的锌转运系统及其调控, 以及锌吸收的分子标记和QTL位点分析。  相似文献   

10.
铁是绝大多数生物生长和代谢过程中必需的营养元素。尽管自然界中铁元素含量非常丰富,但是其生物可利用性却很低。作为一种人体常见的条件致病真菌,白念珠菌在漫长的进化过程中形成了复杂的铁稳态调控网络,能够应答环境中铁浓度的变化,增强菌株对环境的适应力。结合课题组研究工作,简要综述近几年关于铁代谢表达调控途径的研究进展,主要关注白念珠菌在环境铁匮乏条件下铁获得和调控策略,揭示白念珠菌体内铁离子摄取、转运、储存和利用机制。  相似文献   

11.
As a commensal and opportunistic pathogen, Candida albicans possesses a range of determinants that contribute to survival, persistence and virulence. Among this repertoire of fitness and virulence attributes are iron acquisition factors and pathways, which allow fungal cells to gain this essential mineral in the iron-poor environment of the host. The aim of this review is to present the strategies used by C. albicans to exploit host iron reservoirs and their impact on C. albicans pathogenicity. Because iron in the human host is mostly linked to host proteins, pathogens such as C. albicans must possess mechanisms to gain iron from these proteins. Here, we introduce the most important groups of human proteins, including haemoglobin, transferrin, lactoferrin and ferritin, which contain iron and that are potential iron sources for invading microorganisms. We then summarize and discuss the known and proposed strategies by which C. albicans exploits or may exploit iron from host proteins and compare these with strategies from other pathogenic microorganisms.  相似文献   

12.
The effective acquisition of iron is a pre-requisite for survival of all organisms, especially parasites that have a high iron requirement. In mammals, iron homeostasis is meticulously regulated; extracellular free iron is essentially unavailable and host iron availability has a crucial role in the host-pathogen relationship. Therefore, pathogens use specialized and effective mechanisms to acquire iron. In this review, we summarize the iron-uptake systems in eukaryotic unicellular organisms with particular focus on the pathogenic species: Candida albicans, Tritrichomonas foetus, Trypanosoma brucei and Leishmania spp. We describe the diversity of their iron-uptake mechanisms and highlight the importance of the process for virulence.  相似文献   

13.
14.
15.
Bacterial iron homeostasis   总被引:36,自引:0,他引:36  
Iron is essential to virtually all organisms, but poses problems of toxicity and poor solubility. Bacteria have evolved various mechanisms to counter the problems imposed by their iron dependence, allowing them to achieve effective iron homeostasis under a range of iron regimes. Highly efficient iron acquisition systems are used to scavenge iron from the environment under iron-restricted conditions. In many cases, this involves the secretion and internalisation of extracellular ferric chelators called siderophores. Ferrous iron can also be directly imported by the G protein-like transporter, FeoB. For pathogens, host-iron complexes (transferrin, lactoferrin, haem, haemoglobin) are directly used as iron sources. Bacterial iron storage proteins (ferritin, bacterioferritin) provide intracellular iron reserves for use when external supplies are restricted, and iron detoxification proteins (Dps) are employed to protect the chromosome from iron-induced free radical damage. There is evidence that bacteria control their iron requirements in response to iron availability by down-regulating the expression of iron proteins during iron-restricted growth. And finally, the expression of the iron homeostatic machinery is subject to iron-dependent global control ensuring that iron acquisition, storage and consumption are geared to iron availability and that intracellular levels of free iron do not reach toxic levels.  相似文献   

16.
17.
18.
19.
To acquire iron, all species have to overcome the problems of iron insolubility and toxicity. In response to low iron availability in the environment, most fungi excrete ferric iron-specific chelators--siderophores--to mobilize this metal. Siderophore-bound iron is subsequently utilized via the reductive iron assimilatory system or uptake of the siderophore-iron complex. Furthermore, most fungi possess intracellular siderophores as iron storage compounds. Molecular analysis of siderophore biosynthesis was initiated by pioneering studies on the basidiomycete Ustilago maydis, and has progressed recently by characterization of the relevant structural and regulatory genes in the ascomycetes Aspergillus nidulans and Neurospora crassa. In addition, significant advances in the understanding of utilization of siderophore-bound iron have been made recently in the yeasts Saccharomyces cerevisiae and Candida albicans as well as in the filamentous fungus A. nidulans. The present review summarizes molecular details of fungal siderophore biosynthesis and uptake, and the regulatory mechanisms involved in control of the corresponding genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号