首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
【目的】建立以结核分枝杆菌蛋白激酶B为靶点的高通量筛选模型,并运用此模型进行化合物的筛选。【方法】克隆和表达结核分枝杆菌蛋白激酶B,并以其为靶酶建立并优化PknB抑制剂高通量筛选模型,利用该模型对化合物样品进行筛选,并对筛选到的阳性化合物进行抗菌和抑酶活性评价。【结果】利用该模型筛选了化合物样品18 000个,得到具有抑酶活性的阳性化合物8个,其中3个化合物具有较好的对结核分枝杆菌、海分枝杆菌、耻垢分枝杆菌的抑菌活性。【结论】建立的以PknB为靶点的抗结核药物高通量筛选模型具有灵敏度高、稳定性强等优点,可成功用于化合物的高效筛选。筛选得到3个在抑酶水平和抗菌方面均具有良好活性的阳性化合物样品,值得进一步研究。  相似文献   

2.
【目的】建立结核分枝杆菌PheRS抑制剂高通量模型,并运用此模型筛选化合物和发酵液样品。【方法】克隆和表达结核分枝杆菌PheRS蛋白并优化其酶活测定方法,在此基础上建立结核分枝杆菌PheRS抑制剂高通量筛选模型,并通过耻垢分枝杆菌作为检定菌对筛选到的样品进行抗菌活性测定及细胞毒性评价。【结果】运用此模型筛选了化合物样品11 600个,发酵液样品5 200个,筛选得到阳性化合物9个,阳性发酵液37个。而后通过耻垢分枝杆菌作为检定菌的抗菌活性测定及细胞毒性评价后,得到了6个发酵液阳性样品。【结论】建立的PheRS抑制剂模型可成功用于化合物和微生物发酵液的高效筛选,得到的6个发酵液阳性样品在酶水平和抗分枝杆菌方面均具有良好活性且毒性较低,值得进一步研究。  相似文献   

3.
抗生素的滥用和人口的大量流动使得病原菌耐药性增强并与其他病原体产生共感染等问题,严重威胁人类的生命安全,因此,研发新型抗菌药物成为人类亟待解决的问题。丙氨酸消旋酶是以磷酸吡哆醛为辅酶催化L-丙氨酸与D-丙氨酸旋光结构互换的一类异构酶,其消旋产物D-丙氨酸对细菌细胞壁的形成具有决定性作用,与细菌性疾病密切相关。抑制丙氨酸消旋酶的活性会影响细菌的生存,近年来成为设计抗菌药物的一个理想靶位,其抑制剂的开发已成为抗菌药物研发的热点。本文从丙氨酸消旋酶的来源、结构、功能、应用及抑制剂等方面进行系统阐述,并对丙氨酸消旋酶的研究提出新的策略,为进一步研究丙氨酸消旋酶与致病菌的关系及抗菌药物候选靶标的研究提供理论基础。  相似文献   

4.
孟鹏  齐西珍  郑芳  任丽梅  白芳  白钢 《微生物学报》2010,50(8):1080-1086
【目的】针对人α-麦芽糖苷酶这个糖代谢途径中重要的靶蛋白,建立α-糖苷酶抑制剂高通量筛选模型。【方法】采用毕赤酵母表达系统克隆和表达人α-麦芽糖苷酶。利用酶的催化特性建立α-糖苷酶抑制剂筛选模型。应用该模型对放线菌代谢产物库进行高通量筛选。通过构建16SrRNA系统发育树分析阳性菌株的分类地位。【结果】首次成功克隆、表达了具催化活性的人α-麦芽糖苷酶N端结构域。针对人α-麦芽糖苷酶N端催化结构域,建立α-糖苷酶抑制剂的筛选模型。对包含近2000株放线菌代谢产物的天然产物库进行高通量筛选,最终得到20株α-麦芽糖苷酶抑制剂生产菌株。其中19株放线菌为链霉菌属,且在分类学上具有丰富的多样性。【结论】本研究建立的α-糖苷酶抑制剂高通量筛选模型具有很强的实用价值,可用于新型糖苷酶抑制剂类降糖药物的开发。  相似文献   

5.
丙氨酸消旋酶是以磷酸吡哆醛为辅酶,催化L-丙氨酸与D-丙氨酸相互转化的一种酶,它广泛分布在低等生物,而不存在于人类等高等真核生物中.来自不同物种的丙氨酸消旋酶一级结构同源性较高,其大多功能单位为同源二聚体,拥有2个相同的活性中心,每个活性中心均是由来自不同亚基的2个保守残基共同组成.丙氨酸消旋酶催化生成的产物D-丙氨酸是合成细菌细胞壁肽聚糖的重要成分,也是调节细菌孢子萌芽的关键因子.因而丙氨酸消旋酶与由细菌引起的肺结核、炭疽热、中耳炎等疾病密切相关.近年来丙氨酸消旋酶已成为设计抗菌药物的又一理想靶位.本文从丙氨酸消旋酶的结构、功能、作用机理、抑制剂以及其与疾病的关系等方面进行了阐述.  相似文献   

6.
齐西珍  任丽梅  郑芳  张奇  白芳  白钢 《微生物学报》2011,51(8):1106-1112
【目的】针对人胰腺α-淀粉酶这个糖代谢途径中重要的靶蛋白,建立α-淀粉酶抑制剂高通量筛选模型。【方法】采用毕赤酵母表达系统克隆和表达人胰腺α-淀粉酶;利用酶的催化特性建立α-淀粉酶抑制剂筛选模型;应用该模型对放线菌发酵液冻干物进行高通量筛选;通过构建16S rRNA系统发育树分析阳性菌株的分类地位。【结果】成功克隆、表达了具催化活性的人胰腺α-淀粉酶;建立了α-淀粉酶抑制剂的筛选模型;对近2000株放线菌的发酵液冻干物进行高通量筛选,最终得到14株α-淀粉酶抑制剂产生菌株,且在分类学上具有丰富的菌种多样性。【结论】本研究建立的α-淀粉酶抑制剂高通量筛选模型具有很强的实用价值,可用于新型淀粉酶抑制剂类降糖药物的开发。  相似文献   

7.
结核分枝杆菌可以产生11种丝氨酸/苏氨酸蛋白激酶,其中蛋白激酶G(PknG)对于结核分枝杆菌在巨噬细胞内以"持留"状态长期存活有着重要作用。本研究以结核分枝杆菌基因组DNA为模板,在大肠杆菌中克隆表达了MTBPknG蛋白,并分离纯化得到PknG纯酶。本研究还采用三步级联反应方法测定了PknG酶活性,建立和优化了PknG抑制剂高通量筛选模型。利用此模型共筛选发酵液样品2120个,化合物样品2300个,筛选得到阳性化合物1个,阳性发酵液13个,阳性率0.32%。  相似文献   

8.
帕金森病是一种常见的神经系统退行性疾病。多巴脱羧酶(DDC)是帕金森病研究的靶点蛋白之一,但是目前没有高通量的测活模型。因此,需要构建一种高通量多巴脱羧酶抑制剂的筛选模型,用于发现新型抑制剂。采用克隆表达纯化得到多巴脱羧酶和用于酶偶联反应的磷酸烯醇式丙酮酸羧化酶(PEPC)。基于一系列酶联反应将CO2固定,检测其含量,从而测定多巴脱羧酶的活性。结果得到人源多巴脱羧酶和磷酸烯醇式丙酮酸羧化酶的体外纯酶,建立了一种高通量筛选模型,并且从70个天然化合物中,筛选得到2个多巴脱羧酶的抑制剂。成功构建了一种基于体外纯酶高通量多巴脱羧酶抑制剂的筛选模型。  相似文献   

9.
旨在以巨噬细胞迁移抑制因子(MIF)为靶标,采用紫外-分光光度法建立高通量药物筛选体系。对目的基因进行分子克隆,利用大肠杆菌原核表达系统进行纯化得到高纯度的目的蛋白,利用紫外-分光光度法构建酶活体系,并优化体系条件,建立合适的高通量药物筛选模型,最终从384种小分子中筛选出潜在的酶抑制剂。筛选模型构建成功,并筛选出酶活抑制率较高的小分子2种,测得半数抑制浓度IC50分别为59.07μmol/L、44.12μmol/L。针对MIF蛋白,建立了较理想的高通量药物筛选模型,适用于MIF蛋白酶活抑制剂的筛选,有利于后期的药物研发。  相似文献   

10.
旨在建立分子水平HDAC6小分子抑制剂的高通量筛选模型,用于新型HDAC6特异性小分子抑制剂的发现。建立HDAC6的昆虫表达系统,分离纯化HDAC6蛋白,利用底物Boc-Lys(Ac)-AMC对纯化的HDAC6进行测活,并对测活体系进行优化,以SAHA为阳性抑制剂,确定适合高通量筛选的酶及底物浓度,反应时间等。首先构建HDAC6昆虫真核细胞表达载体,转入昆虫细胞中表达,并利用GST亲和柱纯化获得较高纯度的GST-HDAC6融合蛋白;建立体外HDAC6分子测活方法,表明昆虫表达的GST-HDAC6融合蛋白具有去乙酰化酶活性,并通过对多种参数优化使得Z’因子达到0.60,表明分子水平的HDAC6小分子抑制剂高通量筛选体系成功建立。  相似文献   

11.
In eukaryotes and Archaea, selenocysteine synthase (SecS) converts O-phospho-L-seryl-tRNA [Ser]Sec into selenocysteyl-tRNA [Ser]Sec using selenophosphate as the selenium donor compound. The molecular mechanisms underlying SecS activity are presently unknown. We have delineated a 450-residue core of mouse SecS, which retained full selenocysteyl-tRNA [Ser]Sec synthesis activity, and determined its crystal structure at 1.65 A resolution. SecS exhibits three domains that place it in the fold type I family of pyridoxal phosphate (PLP)-dependent enzymes. Two SecS monomers interact intimately and together build up two identical active sites around PLP in a Schiff-base linkage with lysine 284. Two SecS dimers further associate to form a homotetramer. The N terminus, which mediates tetramer formation, and a large insertion that remodels the active site set SecS aside from other members of the family. The active site insertion contributes to PLP binding and positions a glutamate next to the PLP, where it could repel substrates with a free alpha-carboxyl group, suggesting why SecS does not act on free O-phospho-l-serine. Upon soaking crystals in phosphate buffer, a previously disordered loop within the active site insertion contracted to form a phosphate binding site. Residues that are strictly conserved in SecS orthologs but variant in related enzymes coordinate the phosphate and upon mutation corrupt SecS activity. Modeling suggested that the phosphate loop accommodates the gamma-phosphate moiety of O-phospho-l-seryl-tRNA [Ser]Sec and, after phosphate elimination, binds selenophosphate to initiate attack on the proposed aminoacrylyl-tRNA [Ser]Sec intermediate. Based on these results and on the activity profiles of mechanism-based inhibitors, we offer a detailed reaction mechanism for the enzyme.  相似文献   

12.
Inhibitors of human dimethylarginine dimethylaminohydrolase-1 (DDAH-1) are of therapeutic interest for controlling pathological nitric oxide production. Only a limited number of biologically useful inhibitors have been identified, so structurally diverse lead compounds are desired. In contrast with previous assays that do not possess adequate sensitivity for optimal screening, herein is reported a high-throughput assay that uses an alternative thiol-releasing substrate, S-methyl-L-thiocitrulline, and a thiol-reactive fluorophore, 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin, to enable continuous detection of product formation by DDAH-1. The assay is applied to query two commercial libraries totaling 4446 compounds, and two representative hits are described, including a known DDAH-1 inhibitor. This is the most sensitive DDAH-1 assay reported to date and enables screening of compound libraries using [S] = K (M) conditions while displaying Z' factors from 0.6 to 0.8. Therefore, this strategy now makes possible high-throughput screening for human DDAH-1 inhibitors in pursuit of molecular probes and drugs to control excessive nitric oxide production.  相似文献   

13.
The X-linked inhibitor of apoptosis protein (XIAP) is a potent cellular inhibitor of apoptosis. Designing small-molecule inhibitors that target the BIR3 domain of XIAP, where Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI) and caspase-9 bind, is a promising strategy for inhibiting the antiapoptotic activity of XIAP and for overcoming apoptosis resistance of cancer cells mediated by XIAP. Herein, we report the development of a homogeneous high-throughput assay based on fluorescence polarization for measuring the binding affinities of small-molecule inhibitors to the BIR3 domain of XIAP. Among four fluorescent probes tested, a mutated N-terminal Smac peptide (AbuRPFK-(5-Fam)-NH(2)) showed the highest affinity (Kd =17.92 nM) and a large dynamic range (deltamP = 231 +/- 0.9), and was selected as the most suitable probe for the binding assay. The binding conditions (DMSO tolerance and stability) have been investigated. Under optimized conditions, a Z' factor of 0.88 was achieved in a 96-well format for high-throughput screening. It was found that the popular Cheng-Prusoff equation is invalid for the calculation of the competitive inhibition constants (Ki values) for inhibitors in the FP-based competitive binding assay conditions, and accordingly, a new mathematical equation was developed, validated, and used to compute the Ki values. An associated Web-based computer program was also developed for this task. Several known Smac peptides with high and low affinities have been evaluated under the assay conditions and the results obtained indicated that the FP-based competitive binding assay performs correctly as designed: it can quantitatively and accurately determine the binding affinities of Smac-based peptide inhibitors with a wide range of affinities, and is suitable for high-throughput screening of inhibitors binding to the XIAP BIR3 domain.  相似文献   

14.
We have developed a rapid, yeast-based, two-step assay to screen for antiprion drugs. The method allowed us to identify several compounds effective against budding yeast prions responsible for the [PSI+] and [URE3] phenotypes. These inhibitors include the kastellpaolitines, a new class of compounds, and two previously known molecules, phenanthridine and 6-aminophenanthridine. Two potent promoters of mammalian prion clearance in vitro, quinacrine and chlorpromazine, which share structural similarities with the kastellpaolitines, were also active in the assay. The compounds isolated here were also active in promoting mammalian prion clearance. These results validate the present method as an efficient high-throughput screening approach to identify new prion inhibitors and furthermore suggest that biochemical pathways controlling prion formation and/or maintenance are conserved from yeast to humans.  相似文献   

15.
Kwon K  Nagarajan R  Stivers JT 《Biochemistry》2004,43(47):14994-15004
Vaccinia type I DNA topoisomerase exhibits a strong site-specific ribonuclease activity when provided a DNA substrate that contains a single uridine ribonucleotide within a duplex DNA containing the sequence 5' CCCTU 3'. The reaction involves two steps: attack of the active site tyrosine nucleophile of topo I at the 3' phosphodiester of the uridine nucleotide to generate a covalent enzyme-DNA adduct, followed by nucleophilic attack of the uridine 2'-hydroxyl to release the covalently tethered enzyme. Here we report the first continuous spectroscopic assay for topoisomerase that allows monitoring of the ribonuclease reaction under multiple-turnover conditions. The assay is especially robust for high-throughput screening applications because sensitive molecular beacon technology is utilized, and the topoisomerase is released during the reaction to allow turnover of multiple substrate molecules by a single molecule of enzyme. Direct computer simulation of the fluorescence time courses was used to obtain the rate constants for substrate binding and release, covalent complex formation, and formation of the 2',3'-cyclic phosphodiester product of the ribonuclease reaction. The assay allowed rapid screening of a 500 member chemical library from which several new inhibitors of topo I were identified with IC(50) values in the range of 2-100 microM. Three of the most potent hits from the high-throughput screening were also found to inhibit plasmid supercoil relaxation by the enzyme, establishing the utility of the assay in identifying inhibitors of the biologically relevant DNA relaxation reaction. One of the most potent inhibitors of the vaccinia enzyme, 3-benzo[1,3]dioxol-5-yl-2-oxoproprionic acid, did not inhibit the closely related human enzyme. The inhibitory mechanism of this compound is unique and involves a step required for recycling the enzyme for steady-state turnover.  相似文献   

16.
A binding assay for human fatty acid amide hydrolase (FAAH) using the scintillation proximity assay (SPA) technology is described. This SPA uses the specific interactions of [3H]R(+)-methanandamide (MAEA) and FAAH expressing microsomes to evaluate the displacement activity of FAAH inhibitors. We observed that a competitive nonhydrolyzed FAAH inhibitor, [3H]MAEA, bound specifically to the FAAH microsomes. Coincubation with an FAAH inhibitor, URB-597, competitively displaced the [3H]MAEA on the FAAH microsomes. The released radiolabel was then detected through an interaction with the SPA beads. The assay is specific for FAAH given that microsomes prepared from cells expressing the inactive FAAH-S241A mutant or vector alone had no significant ability to bind [3H]MAEA. Furthermore, the binding of [3H]MAEA to FAAH microsomes was abolished by selective FAAH inhibitors in a dose-dependent manner, with IC50 values comparable to those seen in a functional assay. This novel SPA has been validated and demonstrated to be simple, sensitive, and amenable to high-throughput screening.  相似文献   

17.
The family of phosphoinositide 3-kinases (PI3K) regulates fundamental cellular responses such as proliferation, apoptosis, motility, and adhesion. In particular, the PI3K gamma isoform plays a critical role in the control of cell migration. Despite the attractiveness of PI3-kinases as drug targets, drug discovery efforts have been hampered by the lack of appropriate lipid kinase assay formats suitable for high-throughput screening. The authors report the development of a simple and robust 384-well plate assay that is based on(33) P-phosphate transfer from radiolabeled [gamma(33) P]ATP to phosphatidylinositol immobilized on Maxisorp plates. The established assay format for PI3K gamma was easily adapted to the automated screening platform and was successfully employed for high-throughput screening. Enzymatic and inhibition characteristics of recombinant human PI3K gamma determined with the plate assay are in very good agreement with previously reported values determined in other assay formats. Maximal catalytic activity of PI3K gamma was observed at pH 7.0. The apparent K(m) value for ATP using a 1:1 mixture of phosphatidylinositol and phosphatidylserine was determined to be 7.3 microM (6.0-8.6 microM, 95% confidence interval [CI]). IC(50) values for known PI3-kinase inhibitors were determined to be 1.45 nM (1.17-1.80 nM, 95% CI) for wortmannin and estimated from partial inhibition data to be 1400, 2830, and 21,400 nM for quercetin, LY294002, and staurosporine, respectively. This novel assay approach allows for screening of inhibitors of lipid kinases in high-throughput mode and thereby may facilitate the identification of novel inhibitory structures for drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号