首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
从蔗糖糖蜜及工业废水中分离到的一株高蛋白质,高RNA酵母,菌体RNA含量平均达18.3,蛋白质含量达50%以上,经鉴定为热带假丝酵母,用GM50生产酵母抽提物,自溶后抽提物平均得率达70%以上,抽提物蛋白含量达60%以上,游离氨基酸占部氨基酸50%,菌体蛋白利用率高达78%。  相似文献   

2.
固态下酵母自溶可以有效促进菌体内多种活性物质的释放,进而提高酵母类产品的品质。通过优化自溶温度、自溶时间及自溶促进剂锌离子浓度以获得固态发酵下酵母自溶的最佳工艺,对固态发酵物料中游离氨基酸、可溶性蛋白、α-氨基氮含量和A260/A280等指标的分析来确定固态酵母自溶工艺条件,在此基础上以自溶温度40 ℃、50 ℃、55 ℃;作用时间12、18、24 h;锌离子添加浓度2、4、8 mg/kg设置L9(33)正交试验,进一步优化固态酵母自溶的工艺参数。结果表明酵母自溶的最佳工艺条件为:自溶温度55 ℃、作用时间18 h、锌离子浓度2 mg/kg,此时其可溶性蛋白含量可达9.31 mg/g、游离氨基酸14.36 mg/g、α-氨基氮10.16 μg/g、A260/A280为1.73。经工艺优化后,可显著提高酵母自溶产物可溶性蛋白、游离氨基酸和α-氨基氮的含量,从而明显提高了复合菌培养物的品质。  相似文献   

3.
应用外标法测定当归静脉注射液中游离氨基酸和总氨基酸的含量。当归静脉注射液中含有15种氨基酸,其中游离氨基酸最高的是精氨酸,游离氨基酸最低的是甘氨酸。总氨基酸最高的是谷氨酸,总氨基酸最低的是赖氨酸。当归静脉注射液中氨基酸种类丰富,特定氨基酸如精氨酸、谷氨酸含量较高,是其临床特定一些疗效的基础之一。  相似文献   

4.
在调查阿舒假囊酵母(Eremothecium ashbyii)营养要求的基础上,设计了适合该菌生长的合成培养基,在合成培养基上诱变筛选得到了数株抗嘌呤拮抗物8-AG的突变株。选择其中三株U_(95-1)、U_(95-2)和U_(95-3)进行传代和摇瓶发酵试验,U_(95-3)的核黄素发酵单位低于出发菌,未经传代的U_(95-1)、U_(95-2)比出发菌株的发酵水平分别提高15.5%和9.8%,经5~10代传接,其产核黄素的遗传性状稳定。该研究表明,从代谢控制角度通过减轻核黄素合成途径中重要调节酶的反馈抑制对提高E. ashbyii的核黄素产量和稳定性是可行的,为该菌的菌种改良提供了一条遗传育种途径。  相似文献   

5.
氨基酸代谢调控在大鳞副泥鳅应对氨暴露中的作用   总被引:1,自引:0,他引:1  
将大鳞副泥鳅(Paramisgurnus dabryanus)暴露于30 mmol/L NH4Cl溶液中以研究高浓度环境氨对其血浆、肝脏及肌肉组织中游离氨基酸含量的影响。氨暴露会显著影响大鳞副泥鳅血浆、肝脏及肌肉组织中游离氨基酸含量(P0.05)。随着氨暴露时间的延长,大鳞副泥鳅血浆中丙氨酸的含量显著增加,且显著高于对照组(P0.05)。在氨暴露12h后,其肝脏组织中游离谷氨酸含量显著上升(P0.05),而在暴露72h后迅速下降(P0.05)。而游离丙氨酸含量在氨暴露的前24h内基本保持恒定,随后开始显著上升(P0.05)并持续至72h。在氨暴露大鳞副泥鳅12h后,肌肉中游离谷氨酸含量显著上升(P0.05),随后快速下降至初始水平并持续到实验结束(P0.05),且在暴露72h和96h时显著低于对照组(P0.05)。肌肉中游离丙氨酸含量随着氨暴露时间的延长呈现先上升后降低的趋势,并在暴露12h和48h时出现2个峰值,且显著高于对照组(P0.05)。在氨暴露下,其血浆、肝脏及肌肉中游离谷氨酸含量显著降低,且谷氨酰胺含量和谷氨酰胺合成酶活性显著提高,说明在高环境氨条件下,大鳞副泥鳅会利用谷氨酰胺合成酶将谷氨酸和NH_4~+合成无毒的谷氨酰胺以降低氨毒性。随着氨暴露时间的延长,大鳞副泥鳅血浆和组织有明显的丙氨酸累积且游离谷氨酸、精氨酸和脯氨酸含量显著降低,说明其可通过代谢这些特定氨基酸生成丙氨酸以降低体内氨的累积。  相似文献   

6.
樟芝菌丝体的氨基酸成分分析   总被引:4,自引:0,他引:4  
测定了樟芝发酵菌丝体中游离氨基酸和结合氨基酸的含量。结果表明,樟芝菌丝体中含有丰富的8种人体必需氨基酸、支链氨基酸和谷氨酸,其中8种必需氨基酸含量是FAO(联合国粮农组织)标准的5.55倍,而芳香族氨基酸的含量却很低。在测定过程中,由于采用了酸水解,菌丝体中的色氨酸被破坏,而其余17种氨基酸均被测出,含量极其丰富。尤其是支链氨基酸的含量远大于α-酪蛋白、卵蛋白和大豆球蛋白。  相似文献   

7.
在调查阿舒假囊酵母(Eremothecium ashbyii)营养要求的基础上,设计了适合该菌生长的合成培养基,在合成培养基上诱变筛选得到了数株抗嘌呤拮抗物8-AG的突变株。选择其中三株U_(95-1)、U_(95-2)和U_(95-3)进行传代和摇瓶发酵试验,U_(95-3)的核黄素发酵单位低于出发菌,未经传代的U_(95-1)、U_(95-2)比出发菌株的发酵水平分别提高15.5%和9.8%,经5~10代传接,其产核黄素的遗传性状稳定。该研究表明,从代谢控制角度通过减轻核黄素合成途径中重要调节酶的反馈抑制对提高E. ashbyii的核黄素产量和稳定性是可行的,为该菌的菌种改良提供了一条遗传育种途径。  相似文献   

8.
采用生物化学方法测定和分析了河川沙塘鳢(Odontobutis potamophila)胚胎、仔鱼发育过程中蛋白质含量及氨基酸的组成和含量。结果显示,从受精卵开始到孵出后8 d饥饿仔鱼的整个胚胎和仔鱼发育过程中,其总蛋白和总氨基酸含量均呈下降趋势;总的必需氨基酸含量和总的非必需氨基酸含量也一样都呈现出下降趋势;平均含量最高的氨基酸是亮氨酸Leu、赖氨酸Lys、谷氨酸Glu和天冬氨酸Asp。与总氨基酸库相反,游离氨基酸库却呈现出随着发育的进行而不断增长的趋势,这种增长趋势也反映在游离的必需氨基酸和游离的非必需氨基酸含量的变化上,并且平均含量最高的游离氨基酸是赖氨酸Lys、亮氨酸Leu、脯氨酸Pro和谷氨酸Glu。整个发育过程中,游离氨基酸的含量仅占总氨基酸库的很小一部分(在受精卵,仅占0.16%)。由于总蛋白和总氨基酸含量在发育过程中均呈下降趋势,而游离氨基酸含量呈增长趋势,由此可知,在整个胚胎发生过程中,其卵黄蛋白的水解速度大于胚体同化和异化作用对氨基酸的消耗速度。  相似文献   

9.
氮素水平对花生氮素代谢及相关酶活性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
 在大田高产条件下研究了氮素水平对花生(Arachis hypogaea)可溶性蛋白质、游离氨基酸含量及氮代谢相关酶活性的影响, 结果表明, 适当提高氮素水平既能增加花生各器官中可溶性蛋白质和游离氨基酸的含量, 又能提高硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶等氮素同化酶的活性, 使其达到同步增加; 氮素水平过高虽能提高硝酸还原酶和籽仁蛋白质含量, 但谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH)的活性下降; N素施肥水平不改变花生植株各器官中可溶性蛋白质、游离氨基酸含量以及硝酸还原酶(NR)、谷氨酰胺合成酶、谷氨酸脱氢酶活性的变化趋势, 但适量施N (A2和A3处理)使花生各营养器官中GS、GDH活性提高; 氮素水平对花生各叶片和籽仁中GS、GDH活性的高低影响较大, 但对茎和根中GDH活性大小的影响较小。  相似文献   

10.
自 Florey 报道了哺乳动物脑组织抽提物具有一种抑制螯虾肌肉感受器神经元发放的抑制因子(Factor Ⅰ),并将其中的主要有效成份鉴定为 GABA 以来,游离氨基酸与神经系统的兴奋和抑制过程的关系受到人们的广泛注意,如到目前为止,除 GABA 外,尚有甘氨酸、谷氨酸、牛磺酸(Taurine)、门冬氨酸等被已经或可能肯定为神经介质。  相似文献   

11.
Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria.  相似文献   

12.
通过细菌培养液DD值测量和平板计数技术观察不同物质对大肠杆菌生长的影响;对微量元素、稀土元素、动、植物激素、细菌提取物、真菌提取物、藻类提取物、植物提取物和动物提取物等13大类120余种物质在一定浓度范围的促大肠杆菌生长作用进行了观察。海带水提液和酵母提取物对大肠杆菌生长具有明显的促进作用;两的最佳作用浓度分别为20g/L和2%,DD值最大可分别达到对照组的2.93倍和5.06倍;平板计数可达3.94倍和5.39倍。  相似文献   

13.
Four experiments were conducted to assess the effect of foliar applications of various nutrient solutions on the phylloplane yeast community of tall fescue (Festuca arundinacea Schreb.). In the first three experiments, increasing concentrations of sucrose (2–16%), yeast extract (0.5–2.5%), and sucrose plus yeast extract (2.5–18.5% total) were applied and the yeast colony forming units (cfu) enumerated 14 h later by dilution plating. Significant positive linear relationships were observed between the number of yeast cfu and applications of both yeast extract and sucrose plus yeast extract. Foliar applications of sucrose alone had no significant effect on yeast community abundance, indicating that phylloplane yeasts of turfgrass are not limited by the amount or availability of carbohydrates. In the fourth experiment, five different solutions were applied to tall fescue to investigate the response of the yeast community to organic and inorganic nitrogen sources. Tryptone or yeast extract, both with considerable amino acid composition, significantly increased the yeast population, while yeast nitrogen base (with or without amino acids) and ammonium sulfate had no affect on yeast abundance. These results suggest that organic nitrogen stimulate yeast community growth and development on the phylloplane of tall fescue, while carbohydrates, inorganic nitrogen, and non-nitrogenous nutrients have little positive effect.  相似文献   

14.
Although wheat mashes contain only growth-limiting amounts of free amino nitrogen, fermentations by active dry yeast (Saccharomyces cerevisiae) were completed (all fermentable sugars consumed) in 8 days at 20 degrees C even when the mash contained 35 g of dissolved solids per 100 ml. Supplementing wheat mashes with yeast extract, Casamino Acids, or a single amino acid such as glutamic acid stimulated growth of the yeast and reduced the fermentation time. With 0.9% yeast extract as the supplement, the fermentation time was reduced from 8 to 3 days, and a final ethanol yield of 17.1% (vol/vol) was achieved. Free amino nitrogen derived in situ through the hydrolysis of wheat proteins by a protease could substitute for the exogenous nitrogen source. Studies indicated, however, that exogenously added glycine (although readily taken up by the yeast) reduced the cell yield and prolonged the fermentation time. The results suggested that there are qualitative differences among amino acids with regard to their suitability to serve as nitrogen sources for the growth of yeast. The complete utilization of carbohydrates in wheat mashes containing very little free amino nitrogen presumably resulted because they had the "right" kind of amino acids.  相似文献   

15.
Although wheat mashes contain only growth-limiting amounts of free amino nitrogen, fermentations by active dry yeast (Saccharomyces cerevisiae) were completed (all fermentable sugars consumed) in 8 days at 20 degrees C even when the mash contained 35 g of dissolved solids per 100 ml. Supplementing wheat mashes with yeast extract, Casamino Acids, or a single amino acid such as glutamic acid stimulated growth of the yeast and reduced the fermentation time. With 0.9% yeast extract as the supplement, the fermentation time was reduced from 8 to 3 days, and a final ethanol yield of 17.1% (vol/vol) was achieved. Free amino nitrogen derived in situ through the hydrolysis of wheat proteins by a protease could substitute for the exogenous nitrogen source. Studies indicated, however, that exogenously added glycine (although readily taken up by the yeast) reduced the cell yield and prolonged the fermentation time. The results suggested that there are qualitative differences among amino acids with regard to their suitability to serve as nitrogen sources for the growth of yeast. The complete utilization of carbohydrates in wheat mashes containing very little free amino nitrogen presumably resulted because they had the "right" kind of amino acids.  相似文献   

16.
In this study, an ethanol fermentation waste (EFW) was characterized for use as an alternative to yeast extract for bulk fermentation processes. EFW generated from a commercial plant in which ethanol is produced from cassava/rice/wheat/barley starch mixtures using Saccharomyces cerevisiae was used for lactic acid production by Lactobacillus paracasei. The effects of temperature, pH, and duration on the autolysis of an ethanol fermentation broth (EFB) were also investigated. The distilled EFW (DEFW) contained significant amounts of soluble proteins (2.91 g/l), nitrogen (0.47 g/l), and amino acids (24.1 mg/l). The autolysis of the EFB under optimum conditions released twice as much amino acids than in the DEFW. Batch fermentation in the DEFW increased the final lactic acid concentration, overall lactic acid productivity, and lactic acid yield on glucose by 17, 41, and 14 %, respectively, in comparison with those from comparable fermentation in a lactobacillus growth medium (LGM) that contained 2 g/l yeast extract. Furthermore, the overall lactic acid productivity in the autolyzed then distilled EFW (ADEFW) was 80 and 27 % higher than in the LGM and DEFW, respectively.  相似文献   

17.
18.
The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e., higher inoculum size). However, the decreased yeast net growth observed in these high cell density fermentations can have a negative impact on the physiological stability throughout subsequent yeast generations. The use of different oxygen conditions (wort aeration, wort oxygenation, yeast preoxygenation) was investigated to improve the growth yield during high cell density fermentations and yeast metabolic and physiological parameters were assessed systematically. Together with a higher extent of growth (dependent on the applied oxygen conditions), the fermentation power and the formation of unsaturated fatty acids were also affected. Wort oxygenation had a significant decreasing effect on the formation of esters, which was caused by a decreased expression of the alcohol acetyl transferase gene ATF1, compared with the other conditions. Lower glycogen and trehalose levels at the end of fermentation were observed in case of the high cell density fermentations with oxygenated wort and the reference fermentation. The expression levels of BAP2 (encoding the branched chain amino acid permease), ERG1 (encoding squalene epoxidase), and the stress responsive gene HSP12 were predominantly influenced by the high cell concentrations, while OLE1 (encoding the fatty acid desaturase) and the oxidative stress responsive genes SOD1 and CTT1 were mainly affected by the oxygen availability per cell. These results demonstrate that optimisation of high cell density fermentations could be achieved by improving the oxygen conditions, without drastically affecting the physiological condition of the yeast and beer quality.  相似文献   

19.
The correlation between alcoholic fermentation rate, measured as carbon dioxide (CO2) evolution, and the rate of hydrogen sulfide (H2S) formation during wine production was investigated. Both rates and the resulting concentration peaks in fermentor headspace H2S were directly impacted by yeast assimilable nitrogenous compounds in the grape juice. A series of model fermentations was conducted in temperature-controlled and stirred fermentors using a complex model juice with defined concentrations of ammonium ions and/or amino acids. The fermentation rate was measured indirectly by noting the weight loss of the fermentor; H2S was quantitatively trapped in realtime using a pre-calibrated H2S detection tube which was inserted into a fermentor gas relief port. Evolution rates for CO2 and H2S as well as the relative ratios between them were calculated. These fermentations confirmed that total sulfide formation was strongly yeast strain-dependent, and high concentrations of yeast assimilable nitrogen did not necessarily protect against elevated H2S formation. High initial concentrations of ammonium ions via addition of diammonium phosphate (DAP) caused a higher evolution of H2S when compared with a non-supplemented but nondeficient juice. It was observed that the excess availability of a certain yeast assimilable amino acid, arginine, could result in a more sustained CO2 production rate throughout the wine fermentation. The contribution of yeast assimilable amino acids from conventional commercial yeast foods to lowering of the H2S formation was marginal.  相似文献   

20.
L. DE VUYST. 1995 A minimal synthetic medium (SM8) for nisin-producing Lactococcus lactis subsp. lactis strains has been designed; it consists of eight growth-stimulating amino acids (glutamic acid, methionine, valine, leucine, threonine, arginine, isoleucine and histidine), five vitamins (biotin, calcium pantothenate, nicotinic acid, pyridoxine and riboflavin) and the mineral salts dihydrogen phosphate, disodium hydrogen phosphate, sodium chloride, magnesium sulphate and trisodium citrate. Nisin biosynthesis is strongly dependent on the presence of a sulphur source, either an inorganic salt (magnesium sulphate or sodium thiosulphate) or the amino acids methionine, cysteine or cystathionine. The amino acids serine, threonine and cysteine highly stimulate nisin production without affecting the final cell yield, indicating their precursor role during nisin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号