首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Tight junction biogenesis during early development   总被引:1,自引:0,他引:1  
The tight junction (TJ) is an essential component of the differentiated epithelial cell required for polarised transport and intercellular integrity and signalling. Whilst much can be learnt about how the TJ is constructed and maintained and how it functions using a wide range of cellular systems, the mechanisms of TJ biogenesis within developmental models must be studied to gain insight into this process as an integral part of epithelial differentiation. Here, we review TJ biogenesis in the early mammalian embryo, mainly considering the mouse but also including the human and other species, and, briefly, within the amphibian embryo. We relate TJ biogenesis to inherent mechanisms of cell differentiation and biosynthesis occurring during cleavage of the egg and the formation of the first epithelium. We also evaluate a wide range of exogenous cues, including cell-cell interactions, protein kinase C signalling, gap junctional communication, Na+/K+-ATPase and cellular energy status, that may contribute to TJ biogenesis in the embryo and how these may shape the pattern of early morphogenesis.  相似文献   

2.
In epithelial cells, the tight junction (TJ) functions as a permeability barrier and is involved in cellular differentiation and proliferation. Although many TJ proteins have been characterized, little is known about the sequence of events and temporal regulation of TJ assembly in response to adhesion cues. We report here that the deubiquitinating enzyme USP9x has a critical function in TJ biogenesis by controlling the levels of the exchange factor for Arf6 (EFA6), a protein shown to facilitate TJ formation, during a narrow temporal window preceding the establishment of cell polarity. At steady state, EFA6 is constitutively ubiquitinated and turned over by the proteasome. However, at newly forming contacts, USP9x‐mediated deubiquitination protects EFA6 from proteasomal degradation, leading to a transient increase in EFA6 levels. Consistent with this model, USP9x and EFA6 transiently co‐localize at primordial epithelial junctions. Furthermore, knockdown of either EFA6 or USP9x impairs TJ biogenesis and EFA6 overexpression rescues TJ biogenesis in USP9x‐knockdown cells. As the loss of cell polarity is a critical event in the metastatic spread of cancer, these findings may help to understand the pathology of human carcinomas.  相似文献   

3.
In mouse early development, cell contact patterns regulate the spatial organization and segregation of inner cell mass (ICM) and trophectoderm epithelium (TE) during blastocyst morphogenesis. Progressive membrane assembly of tight junctional (TJ) proteins in the differentiating TE during cleavage is upregulated by cell contact asymmetry (outside position) and suppressed within the ICM by cell contact symmetry (inside position). This is reversible, and immunosurgical isolation of the ICM induces upregulation of TJ assembly in a sequence that broadly mimics that occurring during blastocyst formation. The mechanism relating cell contact pattern and TJ assembly was investigated in the ICM model with respect to PKC-mediated signaling and gap junctional communication. Our results indicate that complete cell contact asymmetry is required for TJ biogenesis and acts upstream of PKC-mediated signaling. Specific inhibition of two PKC isoforms, PKCdelta and zeta, revealed that both PKC activities are required for membrane assembly of ZO-2 TJ protein, while only PKCzeta activity is involved in regulating ZO-1alpha+ membrane assembly, suggesting different mechanisms for individual TJ proteins. Gap junctional communication had no apparent influence on either TJ formation or PKC signaling but was itself affected by changes of cell contact patterns. Our data suggest that the dynamics of cell contact patterns coordinate the spatial organization of TJ formation via specific PKC signaling pathways during blastocyst biogenesis.  相似文献   

4.
Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis.  相似文献   

5.
Cell polarity is fundamental to differentiation and function of most cells. Studies in mammalian epithelial cells have revealed that the establishment and maintenance of cell polarity depends upon cell adhesion, signaling networks, the cytoskeleton, and protein transport. Atypical protein kinase C (PKC) isotypes PKCζ and PKCλ have been implicated in signaling through lipid metabolites including phosphatidylinositol 3-phosphates, but their physiological role remains elusive. In the present study we report the identification of a protein, ASIP (atypical PKC isotype–specific interacting protein), that binds to aPKCs, and show that it colocalizes with PKCλ to the cell junctional complex in cultured epithelial MDCKII cells and rat intestinal epithelia. In addition, immunoelectron microscopy revealed that ASIP localizes to tight junctions in intestinal epithelial cells. Furthermore, ASIP shows significant sequence similarity to Caenorhabditis elegans PAR-3. PAR-3 protein is localized to the anterior periphery of the one-cell embryo, and is required for the establishment of cell polarity in early embryos. ASIP and PAR-3 share three PDZ domains, and can both bind to aPKCs. Taken together, our results suggest a role for a protein complex containing ASIP and aPKC in the establishment and/or maintenance of epithelial cell polarity. The evolutionary conservation of the protein complex and its asymmetric distribution in polarized cells from worm embryo to mammalian-differentiated cells may mean that the complex functions generally in the organization of cellular asymmetry.  相似文献   

6.
Tight junctions (TJs) perform a critical role in the transport functions and morphogenetic activity of the primary epithelium formed during Xenopus cleavage. Biogenesis of these junctions was studied by immunolocalization of TJ-associated proteins (cingulin, ZO-1 and occludin) and by an in vivo biotin diffusion assay. Using fertilized eggs synchronized during the first division cycle, we found that membrane assembly of the TJ initiated at the animal pole towards the end of zygote cytokinesis and involved sequential incorporation of components in the order cingulin, ZO-1 and occludin. The three constituents appeared to be recruited from maternal stores and were targeted to the nascent TJ site by different pathways. TJ protein assembly was focused precisely to the border between the oolemma-derived apical membrane and newly-inserted basolateral membrane generated during cytokinesis and culminated in the formation of functional TJs in the two-cell embryo, which maintained a diffusion barrier. New membrane formation and the generation of cell surface polarity therefore precede initiation of TJ formation. Moreover, assembly of TJ marker protein precisely at the apical-basolateral membrane boundary was preserved in the complete absence of intercellular contacts and adhesion. Thus, the mechanism of TJ biogenesis in the Xenopus early embryo relies on intrinsic cues of a cell autonomous mechanism. These data reveal a distinction between Xenopus and mammalian early embryos in the origin and mechanisms of epithelial cell polarization and TJ formation during cleavage of the egg.  相似文献   

7.
In rodents, a circumvallate papilla (CVP) develops with dynamic changes in epithelial morphogenesis during early tongue development. Molecular and cellular studies of CVP development revealed that there would be two different mechanisms in the apex and the trench wall forming regions with specific expression patterns of Wnt11 and Shh. Molecular interactions were examined using in vitro organ culture with over-expression of Shh, important signalling molecules and various inhibitors revealed that there are two significant different mechanisms in CVP formation by Wnt11 and Shh expressions. Wnt, a well known key molecule to initiate taste papillae, would govern Rho activation and cytoskeleton formation in the apex epithelium of CVP. In contrast, Shh regulates the cell proliferation to differentiate taste buds and to invaginate the epithelium for development of von Ebner's gland (VEG). Based on these results, we suggest that these different molecular signalling cascades of Wnt11 and Shh would play crucial roles in specific morphogenesis and pattern formation of CVP during early mouse embryo development.  相似文献   

8.
During early mammalian development, blastocyst morphogenesis is achieved by epithelial differentiation of trophectoderm (TE) and its segregation from the inner cell mass (ICM). Two major interrelated features of TE differentiation required for blastocoel formation include intercellular junction biogenesis and a directed ion transport system, mediated by Na+/K+ ATPase. We have examined the relative contribution of intercellular signalling mediated by protein kinase C (PKC) and gap junctional communication in TE differentiation and blastocyst cavitation. The distribution pattern of four (delta, theta, iota/lambda, zeta) PKC isoforms and PKCmicro/PKD1 showed partial colocalisation with the tight junction marker ZO-1alpha+ in TE and all four PKCs (delta, theta, iota/lambda, zeta) showed distinct TE/ICM staining patterns (predominantly at the cell membrane within the TE and cytoplasmic within the ICM), indicating their potential contribution to TE differentiation and blastocyst morphogenesis. Specific inhibition of PKCdelta and zeta activity significantly delayed blastocyst formation. Although modulation of these PKC isoforms failed to influence the already established programme of epithelial junctional differentiation within the TE, Na+/K+ ATPase alpha1 subunit was internalised from membrane to cytoplasm. Inhibition of gap junctional communication, in contrast, had no influence on any of these processes. Our results demonstrate for the first time that distinct PKC isotypes contribute to the regulation of cavitation in preimplantation embryos via target proteins including Na+/K+ ATPase.  相似文献   

9.
Although Islet-1 expression in the pituitary gland of early mouse embryo has been previously described, there are no reports concerning the correlation of Islet-1 expression with lineage restrictions in cell types at the later stages of pituitary development. The role of Islet-1 in chickens is also unknown. The purpose of this study was to follow, by using immunohistochemistry, the ontogeny of pituitary Islet-1 and the various cell types that contain Islet-1 throughout chick embryo development. A few Islet-1-immunopositive (Islet-1+) cells were first detected in the pituitary primordium in two out of six embryos at embryonic day 5.5 (E5.5), most of the Islet-1+ cells being ventrally located. As development progressed, many more Islet-1+ cells were observed throughout the pars distalis. The relative percentage of Islet-1+ cells amongst the total Rathke’s pouch cells was 4.4% at E6.5. This increased significantly, reaching 11.1% by E10.5, followed by no significant change until hatching. Dual immunohistochemistry showed that adrenocorticotrophs, somatotrophs and lactotrophs did not express Islet-1. The cellular types expressing Islet-1 included luteinizing-hormone-positive (LH+) gonadotrophs and thyroid-stimulating-hormone-positive (TSH+) thyrotrophs. The cells co-expressing LH and Islet-1 were initially detected at E6.5, the proportion of LH+ cells possessing Islet-1 being about 4%; this increased to 63% at E14.5, followed by no significant changes until hatching. TSH and Islet-1 co-localized cells were first observed at E10.5, with about 37% TSH+ cell expressing Islet-1; this increased to about 50% by E16.5, after which there was no evident change until hatching. These results suggest that Islet-1 is involved in determining the cell lineages, proliferation, differentiation and maintenance of hormone-secreting functions of pituitary gonadotrophs and thyrotrophs of chick embryo. J. Liu and Y. He contributed equally to this article. This work was supported by grants from Beijing Natural Science Foundation (6042013) and the Natural Science Foundation of China (30471264, 30325034).  相似文献   

10.
In addition to being a very well-known ion pump, Na+, K+-ATPase is a cell–cell adhesion molecule and the receptor of digitalis, which transduces regulatory signals for cell adhesion, growth, apoptosis, motility and differentiation. Prolonged ouabain (OUA) blockage of activity of Na+, K+-ATPase leads to cell detachment from one another and from substrates. Here, we investigated the cellular mechanisms involved in tight junction (TJ) disassembly upon exposure to toxic levels of OUA (≥300 nM) in epithelial renal canine cells (MDCK). OUA induces a progressive decrease in the transepithelial electrical resistance (TER); inhibitors of the epidermal growth factor receptor (EGFR, PD153035), cSrc (SU6656 and PP2) and ERK1/2 kinases (PD98059) delay this decrease. We have determined that the TER decrease depends upon internalization and degradation of the TJs proteins claudin (CLDN) 2, CLDN-4, occludin (OCLN) and zonula occludens-1 (ZO-1). OUA-induced degradation of proteins is either sensitive (CLDN-4, OCLN and ZO-1) or insensitive (CLDN-2) to ERK1/2 inhibition. In agreement with the protein degradation findings, OUA decreases the cellular content of ZO-1 and CLDN-2 mRNAs but surprisingly, increases the mRNA of CLDN-4 and OCLN. Changes in the mRNA levels are sensitive (CLDN-4, OCLN and ZO-1) or insensitive (CLDN-2) to ERK1/2 inhibition as well. Thus, toxic levels of OUA activate the EGFR-cSrc-ERK1/2 pathway to induce endocytosis, internalization and degradation of TJ proteins. We also observed decreases in the levels of CLDN-2 protein and mRNA, which were independent of the EGFR-cSrc-ERK1/2 pathway.  相似文献   

11.
12.
Summary Three-dimensional epithelial culture models are widely used to emulate a more physiologically relevant microenvironment for the study of genes and signaling pathways. Prostate epithelial cells can grow into solid cell masses or acinus-like spheroids in Matrigel. To test if the ability to form acinus-like spheroids in Matrigel is dependent on how undifferentiated a cell is or whether it is tumor or nontumor, we established six novel epithelial cell lines. Primary prostate epithelial cells were immortalized using HPV16 E6 gene transduction and were named Shmac 2, 3, and 6 (nontumor); Shmac 4, Shmac 5, and P4E6 (tumor). All cell lines were phenotyped in monolayer culture, and their ability to form acinus-like spheroids in Matrigel investigated. The cell lines exhibited a wide range of population doubling times and all showed an intermediate phenotype in nonolayer culture (luminalCK+/basalCK+/CD44+/PSA+/AR). Only Shmac 5 cells formed acinus-like spheroids when cultured in Matrigel. Co-culture of the spheroids with fibroblasts advanced differentiation by inducing androgen receptor expression and epithelial polarization. Our findings indicate that tumor cells can form acinus-like spheroids in Matrigel.  相似文献   

13.
14.
15.
Changes in intracellular elemental (Na, K) concentrations caused by cytochalasin B were measured by electron probe microanalysis. Cytochalasin B is applied to transfer somatic cell nuclei into early embryo cells. This chemical causes a cytoskeleton rearrangement that may activate potassium channels, which, in turn, results in a cytoplasmic Na+/K+ imbalance. Our study showed that cytochalasin B reduced the intracellular sodium concentration. After the exposure of the mouse embryo with Dulbecco’s solution free from chemical, the Na+/K+ balance in cytoplasm reached the initial level. Possible mechanisms of registered changes in intracellular Na+ concentration are discussed.  相似文献   

16.
Entamoeba histolytica is the causative agent of human amoebiasis, a major cause of diarrhea and hepatic abscess in tropical countries. Infection is initiated by interaction of the pathogen with intestinal epithelial cells. This interaction leads to disruption of intercellular structures such as tight junctions (TJ). TJ ensure sealing of the epithelial layer to separate host tissue from gut lumen. Recent studies provide evidence that disruption of TJ by the parasitic protein EhCPADH112 is a prerequisite for E. histolytica invasion that is accompanied by epithelial barrier dysfunction. Thus, the analysis of molecular mechanisms involved in TJ disassembly during E. histolytica invasion is of paramount importance to improve our understanding of amoebiasis pathogenesis. This article presents an easy model that allows the assessment of initial host-pathogen interactions and the parasite invasion potential. Parameters to be analyzed include transepithelial electrical resistance, interaction of EhCPADH112 with epithelial surface receptors, changes in expression and localization of epithelial junctional markers and localization of parasite molecules within epithelial cells.  相似文献   

17.
Epithelial cell polarity is essential for the establishment and maintenance of morphological and functional asymmetries that underlie normal renal structure and function and are brought about by the appropriate delivery of growth factor receptors and ion and fluid transporters and channels to apical or basolateral cell membranes. The fundamental process of cellular polarization is established early during development and is controlled by sets of evolutionarily conserved proteins that integrate intrinsic and extrinsic polarity cues. Specialized structural domains between adjacent cells and cells with their matrix, termed adherens junctions (AJ) and focal adhesions (FA), respectively, are formed that contain specific components of multi-molecular complexes acting as sites to recruit proteins and to activate intracellular mechano-transduction pathways. Regulation of these processes results in tight spatio-temporal control of renal tubule growth and lumen diameter. Abnormalities in macromolecular polarization complexes lead to a variety of diseases in different organs, a common example of which is Polycystic Kidney Disease (PKD), where epithelial cysts replace normal renal tubules. Membrane protein polarity defects in Autosomal Dominant (AD) PKD include the mis-polarization of normally basolateral membrane proteins to apical, lumenal membranes, such as epidermal growth factor (EGFR/ErbB) receptors and Na+K+-ATPase-α1 subunit; mis-polarization of normally apical membrane proteins to basolateral membranes, including the Na+K+2Cl (NKCC1) symporter; and the failure to traffic and insert proteins into membranes resulting in their intracellular accumulation, such as E-cadherin and the β1 subunit of Na+K+-ATPase. Abnormalities in structural AJ, FA and polarity complexes in ADPKD epithelia include loss of E-cadherin, and focal adhesion kinase (FAK), MALS-3, Crb and Dlg complexes as well as disruptions in Rab/sec and syntaxin trafficking and membrane docking pathways. Since proper polarization of epithelial cells lining renal tubules is essential for normal kidney development and differentiation to prevent abnormal cystic dilation, interventions to reverse polarity defects to normal would offer therapeutic opportunities for PKD. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

18.
Summary Current models of intestinal transport suggest cells which absorb ions are located on the villus while secretory cells are located in the crypt and putatively have paracellular pathways which are highly conductive to Na+. One approach to assess possible variation in small intestinal paracellular conductance along the crypt-villus axis is to morphometrically analyze the structural aspects of crypt and villus tight junctions (TJs) which relate to paracellular resistance. Such detailed analysis of junctional structure in this heterogeneous epithelium would permit one to compare intestinal TJ structure-function relationships with those in a structurally simpler epithelium such as that of toad urinary bladder. This comparison would also be of considerable interest since previous similar comparisons have failed to consider in detail the geometric dissimilarity between these two epithelia. We applied light, electron microscopic, and freezefracture morphometric techniques to guinea pig ileal mucosa to quantitatively assess, for both crypts and villi, linear TJ density, relative surface contributions, and TJ strand counts. Mean linear TJ densities were 76.8 m/cm2 for crypt cells and 21.8 m/cm2 for villus absorptive cells. Mean TJ strand counts were 4.45 for undifferentiated crypt cell TJs and 6.03 for villus absorptive cell TJs. The villus constituted 87% and the crypt 13% of total surface. We utilized these data to predict paracellular conductance of cryptsvs. villi based on equations derived from those of Claude (P. Claude,J. Membrane Biol. 39:219–232, 1978). Such analysis predicts that 73% of ileal paracellular conductance is attributable to the crypt. Furthermore, we obtained literature values for paracellular resistance in mammalian ileum and toad urinary bladder and for toad bladder TJ structure and linear density and constructed a relationship which would allow us to more accurately compare TJ structure-function correlates between these two epithelia. Such a comparison, which considers both surface amplification and TJ structure and distribution in these epithelia, shows that one would predictin vitro measured values for paracellular resistance should be approximately two orders of magnitude less in mammalian ileum than in toad urinary bladder. This predicted discrepancy (115-fold) correlates well with the observed difference (100-fold). These findings suggest that highly similar TJ structure-function relationships apply to these geometrically dissimilar tissues and that, in mammalian ileum, the crypt compartment may be responsible for the majority of net ileal paracellular conductance. We speculate that high crypt linear TJ density and low crypt TJ strand counts may serve as the structural basis of massive paracellular Na+ movement which is coupled to active Cl secretion and appears to originate from the crypt following exposure to intestinal secretagogues.  相似文献   

19.
Understanding the mechanisms of controlled expansion and differentiation of basal progenitor cell populations during organogenesis is essential for developing targeted regenerative therapies. Since the cytokeratin 5-positive (K5+) basal epithelial cell population in the salivary gland is regulated by retinoic acid signaling, we interrogated how isoform-specific retinoic acid receptor (RAR) signaling impacts the K5+ cell population during salivary gland organogenesis to identify RAR isoform-specific mechanisms that could be exploited in future regenerative therapies. In this study, we utilized RAR isoform-specific inhibitors and agonists with murine submandibular salivary gland organ explants. We determined that RARα and RARγ have opposing effects on K5+ cell cycle progression and cell distribution. RARα negatively regulates K5+ cells in both whole organ explants and in isolated epithelial rudiments. In contrast, RARγ is necessary but not sufficient to positively maintain K5+ cells, as agonism of RARγ alone failed to significantly expand the population. Although retinoids are known to stimulate differentiation, K5 levels were not inversely correlated with differentiated ductal cytokeratins. Instead, RARα agonism and RARγ inhibition, corresponding with reduced K5, resulted in premature lumenization, as marked by prominin-1. With lineage tracing, we demonstrated that K5+ cells have the capacity to become prominin-1+ cells. We conclude that RARα and RARγ reciprocally control K5+ progenitor cells endogenously in the developing submandibular salivary epithelium, in a cell cycle-dependent manner, controlling lumenization independently of keratinizing differentiation. Based on these data, isoform-specific targeting RARα may be more effective than pan-RAR inhibitors for regenerative therapies that seek to expand the K5+ progenitor cell pool. Summary statement: RARα and RARγ reciprocally control K5+ progenitor cell proliferation and distribution in the developing submandibular salivary epithelium in a cell cycle-dependent manner while regulating lumenization independently of keratinizing differentiation.  相似文献   

20.
Cytokines that signal through the leukemia inhibitory factor (LIF) receptor, such as LIF and ciliary neuronotrophic factor, have a wide range of roles within both the developing and mature nervous system. They play a vital role in the differentiation of neural precursor cells into astrocytes and can prevent or promote neuronal differentiation. One of the conundrums regarding signalling through the LIF receptor is how it can have multiple, often conflicting roles in different cell types, such as enhancing the differentiation of astrocytes while inhibiting the differentiation of some neuronal cells. Factors that can modulate signal transduction downstream of cytokine signalling, such as "suppressor of cytokine signalling" proteins, which inhibit the JAK/STAT but not the mitogen-activated protein kinase pathway, may therefore play an important role in determining how a given cell will respond to cytokine signalling. This review discusses the general effects of cytokine signalling within the nervous system. Special emphasis is placed on differentiation of neural precursor cells and the role that regulation of cytokine signalling may play in how a given precursor cell responds to cytokine stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号