首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Aquaporin, AQP, is a channel protein that allows water to permeate across cell membranes. Larvae of the sleeping chironomid, Polypedilum vanderplanki, can withstand complete dehydration by entering anhydrobiosis, a state of suspended animation; however, the mechanism by which water flows out of the larval body during dehydration is still unclear. We isolated two cDNAs (PvAqp1 and PvAqp2) encoding water-selective aquaporins from the chironomid. When expressed in Xenopus oocytes, PvAQP1 and PvAQP2 facilitated permeation of water but not glycerol. Northern blots and in situ hybridization showed that expression of PvAqp1 was dehydration-inducible and ubiquitous whereas that of PvAqp2 was dehydration-repressive and fat body-specific. These data suggest distinct roles for these aquaporins in P. vanderplanki, i.e., PvAqp2 controls water homeostasis of fat body during normal conditions and PvAqp1 is involved in the removal of water during induction of anhydrobiosis.  相似文献   

2.
Strategies to combat desiccation are critical for organisms living in arid and semi-arid areas. Larvae of the Australian chironomid Paraborniella tonnoiri resist desiccation by reducing water loss. In contrast, larvae of the African species Polypedilum vanderplanki can withstand almost complete dehydration, referred to as anhydrobiosis. For successful anhydrobiosis, the dehydration rate of P. vanderplanki larvae has to be controlled. Here, we desiccated larvae by exposing them to different drying regimes, each progressing from high to low relative humidity, and examined survival after rehydration. In larvae of P. vanderplanki, reactions following desiccation can be categorized as follows: (I) no recovery at all (direct death), (II) dying by unrepairable damages after rehydration (delayed death), and (III) full recovery (successful anhydrobiosis). Initial conditions of desiccation severely affected survival following rehydration, i.e. P. vanderplanki preferred 100% relative humidity where body water content decreased slightly. In subsequent conditions, unfavorable dehydration rate, such as more than 0.7 mg water lost per day, resulted in markedly decreased survival rate of rehydrated larvae. Slow dehydration may be required for the synthesis and distribution of essential molecules for anhydrobiosis. Larvae desiccated at or above maximum tolerable rates sometimes showed temporary recovery but died soon after.  相似文献   

3.
4.
Dry-preservation of nucleated cells from multicellular animals represents a significant challenge in life science. As anhydrobionts can tolerate a desiccated state, their cells and organs are expected to show high desiccation tolerance in vitro. In the present study, we established cell lines derived from embryonic tissues of an anhydrobiotic chironomid, Polypedilum vanderplanki, designated as Pv11 and Pv210. Salinity stress induced the expression of a set of anhydrobiosis-related genes in both Pv11 and Pv210 cells, suggesting that at least a part of cells can autonomously control the physiological changes for the entry into anhydrobiosis. When desiccated with medium supplemented with 300 mM trehalose or sucrose and stored for 4 weeks in dry air (approximately 5% relative humidity), a small percentage of the cells was found to be viable upon rehydration, although surviving cells seemed not to be able to multiply. We also attempted dry-preservation of organs isolated from P. vanderplanki larvae, and found that a proportion of cells in some organs, including fat body, testis, nerve and dorsal vessel, tolerated in vitro desiccation.  相似文献   

5.
Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P. vanderplanki larvae after 0, 12, and 36 h of desiccation. The database contained 15,056 ESTs distributed into 4,807 UniGene clusters. ESTs were classified according to gene ontology categories, and putative expression patterns were deduced for all clusters on the basis of the number of clones in each library; expression patterns were confirmed by real-time PCR for selected genes. Among up-regulated genes, antioxidants, late embryogenesis abundant (LEA) proteins, and heat shock proteins (Hsps) were identified as important groups for anhydrobiosis. Genes related to trehalose metabolism and various transporters were also strongly induced by desiccation. Those results suggest that the oxidative stress response plays a central role in successful anhydrobiosis. Similarly, protein denaturation and aggregation may be prevented by marked up-regulation of Hsps and the anhydrobiosis-specific LEA proteins. A third major feature is the predicted increase in trehalose synthesis and in the expression of various transporter proteins allowing the distribution of trehalose and other solutes to all tissues.  相似文献   

6.
The African chironomid Polypedilum vanderplanki exhibits anhydrobiosis,i.e., the larvae can survive complete desiccation. Recoveryrate and trehalose content were investigated in larvae desiccatedslowly or at a rate more than 3 times faster. Upon slow desiccation(evaporation rate 0.22 ml day–1) larvae synthesized 38µg trehalose/individual before complete desiccation, andall of them recovered after rehydration, whereas larvae thatwere dehydrated quickly (evaporation rate 0.75 ml day–1)accumulated only 6.8 µg trehalose/individual and noneof them revived after rehydration. In the pools that are theirnatural habitat P. vanderplanki larvae make tubes by incorporatingdetritus or soil with their sticky saliva. This tubular structureis a physical barrier not only to protect the larva from naturalenemies but also induces successful anhydrobiosis by reducingthe dehydration rate. When larvae were dehydrated with 100 µldistilled water (DW) in soil tubes, they accumulated 37 µgtrehalose/individual and more than half of them could reviveafter rehydration, whereas larvae without tubes accumulatedlower level of trehalose and none recovered after rehydration.  相似文献   

7.
8.
We recently cloned a trehalose transporter gene (Tret1) that contributes to anhydrobiosis induction in the sleeping chironomid Polypedilum vanderplanki Hinton. Because trehalose is the main haemolymph sugar in most insects, they might possess Tret1 orthologs involved in maintaining haemolymph trehalose levels. We cloned Tret1 orthologs from four species in three insect orders. The similarities of the amino acid sequence to TRET1 in P. vanderplanki were 58.5–80.4%. Phylogenetic analysis suggested the Tret1 sequences were conserved in insects. The Xenopus oocyte expression system showed apparent differences in the Km and Vmax values for trehalose transport activity among the six proteins encoded by the corresponding orthologs. The TRET1 orthologs of Anopheles gambiae (Km: 45.74 ± 3.58 mM) and Bombyx mori (71.58 ± 6.45 mM) showed low trehalose affinity, whereas those of Apis mellifera (9.42 ± 2.37 mM) and Drosophila melanogaster (10.94 ± 7.70 mM) showed high affinity. This difference in kinetics might be reflected in the haemolymph trehalose:glucose ratio of each species. Tret1 was expressed not only in the fat body but also in muscle and testis. These findings suggest that insect TRET1 is responsible for the release of trehalose from the fat body and the incorporation of trehalose into other tissues that require a carbon source, thereby regulating trehalose levels in the haemolymph.  相似文献   

9.
Cornette R  Kikawada T 《IUBMB life》2011,63(6):419-429
An African chironomid, Polypedilum vanderplanki, is the only insect known to be capable of extreme desiccation tolerance, or anhydrobiosis. In the 1950s and 1960s, Hinton strenuously studied anhydrobiosis in this insect from a physiological standpoint; however, nobody has afterward investigated the phenomenon. In 2000, research on mechanisms underlying anhydrobiosis was resumed due to successful establishment of a rearing system for P. vanderplanki. This review is focused on the latest findings on the physiological and molecular mechanisms underlying the induction of anhydrobiosis in P. vanderplanki. Early experiments demonstrated that the induction of anhydrobiosis was possible in isolated tissues and independent from the control of central nervous system. However, to achieve successful anhydrobiosis, larvae need a slow regime of desiccation, allowing them to synthesize molecules, which will protect cells and tissues against the deleterious effects of dehydration. Trehalose, a nonreducing disaccharide, which accumulates in P. vanderplanki larvae up to 20% of the dry body mass, is thought to replace the water in its tissues. Similarly, highly hydrophilic proteins called the late embryogenesis abundant (LEA) proteins are expressed in huge quantities and act as a molecular shield to protect biological molecules against aggregation and denaturation. This function is shared by heat shock proteins, which are also upregulated during the desiccation process. At the same time, desiccating larvae express various antioxidant molecules and enzymes, to cope with the massive oxidative stress, which is responsible for general damage to membranes, proteins, and DNA in dehydrating cells. Finally, specific water channels, called aquaporins, accelerate dehydration, and trehalose together with LEA proteins forms a glassy matrix, which protects the biological molecules and the structural integrity of larvae in the anhydrobiotic state.  相似文献   

10.
The sleeping chironomid (Polypedilum vanderplanki Hinton) lives on temporary rock pools in the semi‐arid tropical regions of Africa. Its larvae are able to survive the dry season in a completely desiccated ametabolic state known as anhydrobiosis. So far, P. vanderplanki was the only species among all insects showing demonstrated anhydrobiotic ability. Here, we show that a new related species originating from Malawi, Polypedilum pembai sp.n. , is also anhydrobiotic and that its desiccation tolerance mechanism is probably similar to what is observed in P. vanderplanki. The new species, P. pembai sp.n. , is described with special attention to the common and different morphological features, compared with P. vanderplanki. Phylogenetic analysis showed that both species are closely related, suggesting that anhydrobiosis evolved only once in their common ancestor about 49 Ma somewhere in Africa, before the divergence of two species, one in the sub‐Saharan area and another in southeastern Africa.  相似文献   

11.
Nematodes of three genera (Acrobeloides sp., Aphelenchus avenae, and Scutellonema brachyurum) were induced to coil and enter anhydrobiosis in drying soil of two types: sandy loam and loamy sand. Coiling was studied in relationship to soil moisture characteristics. Coiling and the physiological state of anhydrobiosis occurred before the water in sandy soils reached a water potential of -15 bars. Coiling was maximum at 3-6 bars, depending on the soil type and nematode species. It appeared that induction of coiling and anhydrohiosis were determined by the physical forces exerted by the water film surrounding the nematode, which, for these three species, was 6-9 monomolecular layers of water, rather than the % moisture and relative humidity of the soil per se.  相似文献   

12.
The larva of the African chironomid Polypedilum vanderplanki can withstand complete desiccation. Our previous reports revealed that even when the larva is dehydrated without a brain, it accumulated a great amount of trehalose and successfully went into anhydrobiosis. In this paper we determined the viability after rehydration in tissues from the larvae followed by complete dehydration. Only fat-body tissues that were the main producer of trehalose could be preserved in a dry state at room temperature for an extended period of more than 18 months in a viable form. Thus we have confirmed that the central nervous system is not involved in the induction of anhydrobiosis, even in this complex multicellular organism.  相似文献   

13.

Larvae of the African midge Polypedilum vanderplanki show extreme desiccation tolerance, known as anhydrobiosis. Recently, the cultured cell line Pv11 was derived from this species; Pv11 cells can be preserved in the dry state for over 6 months and retain their proliferation potential. Here, we attempted to expand the use of Pv11 cells as a model to investigate the mechanisms underlying anhydrobiosis in P. vanderplanki. A newly developed vector comprising a constitutive promoter for the PvGapdh gene allowed the expression of exogenous proteins in Pv11 cells. Using this vector, a stable Pv11 cell line expressing green fluorescence protein (GFP) was established and retained desiccation tolerance. Gene silencing with GFP-specific siRNAs significantly suppressed GFP expression to approximately 7.5–34.6% of that in the non-siRNA-transfected GFP stable line. Establishment of these functional assays will enable Pv11 cells to be utilized as an effective tool to investigate the molecular mechanisms underlying anhydrobiosis.

  相似文献   

14.
15.
Aquaporin (AQP) water channel proteins play key roles in water movement across cell membranes. Extending previous reports of cryoprotective functions in insects, this study examines roles of AQPs in response to dehydration, rehydration, and freezing, and their distribution in specific tissues of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae). When AQPs were blocked using mercuric chloride, tissue dehydration tolerance increased in response to hypertonic challenge, and susceptibility to overhydration decreased in a hypotonic solution. Blocking AQPs decreased the ability of tissues from the midgut and Malpighian tubules to tolerate freezing, but only minimal changes were noted in cellular viability of the fat body. Immuno-localization revealed that a DRIP-like protein (a Drosophila aquaporin), AQP2- and AQP3 (aquaglyceroporin)-like proteins were present in most larval tissues. DRIP- and AQP2-like proteins were also present in the gut of adult midges, but AQP4-like protein was not detectable in any tissues we examined. Western blotting indicated that larval AQP2-like protein levels were increased in response to dehydration, rehydration and freezing, whereas, in adults DRIP-, AQP2-, and AQP3-like proteins were elevated by dehydration. These results imply a vital role for aquaporin/aquaglyceroporins in water relations and freezing tolerance in B. antarctica.  相似文献   

16.
Aquaporins are membrane channels that facilitate the transport of water and other small molecules across the cellular membranes. We examined the role of six aquaporins of Vitis vinifera (cv. Touriga nacional) in the transport of water and atypical substrates (other than water) in an aqy-null strain of Saccharomyces cerevisiae. Their functional characterization for water transport was performed by stopped-flow fluorescence spectroscopy. The evaluation of permeability coefficients (Pf) and activation energies (Ea) revealed that three aquaporins (VvTnPIP2;1, VvTnTIP1;1 and VvTnTIP2;2) are functional for water transport, while the other three (VvTnPIP1;4, VvTnPIP2;3 and VvTnTIP4;1) are non-functional. TIPs (VvTnTIP1;1 and VvTnTIP2;2) exhibited higher water permeability than VvTnPIP2;1. All functional aquaporins were found to be sensitive to HgCl2, since their water conductivity was reduced (24–38%) by the addition of 0.5 mM HgCl2. Expression of Vitis aquaporins caused different sensitive phenotypes to yeast strains when grown under hyperosmotic stress generated by KCl or sorbitol. Our results also indicate that Vitis aquaporins are putative transporters of other small molecules of physiological importance. Their sequence analyses revealed the presence of signature sequences for transport of ammonia, boron, CO2, H2O2 and urea. The phenotypic growth variations of yeast cells showed that heterologous expression of Vitis aquaporins increased susceptibility to externally applied boron and H2O2, suggesting the contribution of Vitis aquaporins in the transport of these species.  相似文献   

17.
Aquaporin proteins are part of the complex response of common bean (Phaseolus vulgaris L.) to drought which affects the quality and quantity of yield of this important crop. To better understand the role of aquaporins in common bean, drought-induced gene expression of several aquaporins was determined in two cultivars, the more drought tolerant Tiber and the less tolerant Starozagorski ?ern. The two bean cultivars were selected among 16 European genotypes based on the tolerance to drought determined by time needed for plants to wilt after withholding irrigation and yield at harvest. The expression patterns of two plasma membrane intrinsic proteins, PvPIP1;2 and PvPIP2;7, and two tonoplast intrinsic proteins, PvTIP1;1 and PvTIP4;1 in leaves of 21 day old plants were determined by RT-qPCR in both cultivars under three degrees of drought stress, and under rehydration and control conditions. Gene expression of all four examined aquaporins was down-regulated in drought stressed plants. After rehydration it returned to the level of control plants or was even higher. The responses of PvPIP2;7 and PvTIP1;1 during drought and rehydration were particularly pronounced. The gene expression of PvPIP2;7 and PvTIP4;1 during drought was cultivar specific, with greater down-regulation of these two aquaporins in drought tolerant Tiber. Under drought stress the relative water content and water potential of leaves were higher in Tiber than in Starozagorski plants. The differences in these physiological parameters indicate greater prevention of water loss in Tiber during drought, which may be associated with rapid and adequate down-regulation of aquaporins. These results suggest that the ability of plants to conserve water during drought stress involves timely and sufficient down-regulation of gene expression of specific aquaporins.  相似文献   

18.
19.
Tolerance to desiccation was compared among 12 Japanese species of chironomid larvae under the condition of 60% in relative humidity at 25.5?°C. Three parameters were assessed: time to 50% survival (T 50), water loss at 50% survival (WL50) and water loss rate (WLR). T 50, WL50 and WLR were determined as measures of desiccation tolerance, dehydration tolerance, and dehydration resistance, respectively. T 50 was 64.4–142 min for most species, except Propsilocerus akamusi (Tokunaga) which took 872 min. WL50 was 60.6–82.4% for all species. WLR was only 0.0664% per minute for Pr. akamusi, while it was 0.629–1.50% for the other species. These results showed that Pr. akamusi had a high desiccation tolerance due to a high preventive ability of evaporation from body surface. T 50 showed no significant relationships to WL50 or WLR among the 12 species, while there was a significant positive relationship between WL50 and WLR. These results suggest that chironomid species have a trade-off tendency that a species has a high tolerance – low resistance or a high resistance – low tolerance for dehydration.  相似文献   

20.
Some hemipteran xylem and phloem-feeding insects have evolved specialized alimentary structures or filter chambers that rapidly transport water for excretion or osmoregulation. In the whitefly, Bemisia tabaci, mass movement of water through opposing alimentary tract tissues within the filter chamber is likely facilitated by an aquaporin protein. B. tabaci aquaporin-1 (BtAQP1) possesses characteristic aquaporin topology and conserved pore-forming residues found in water-specific aquaporins. As predicted for an integral transmembrane protein, recombinant BtAQP1 expressed in cultured insect cells localized within the plasma membrane. BtAQP1 is primarily expressed in early instar nymphs and adults, where in adults it is localized in the filter chamber and hindgut. Xenopus oocytes expressing BtAQP1 were water permeable and mercury-sensitive, both characteristics of classical water-specific aquaporins. These data support the hypothesis that BtAQP1 is a water transport protein within the specialized filter chamber of the alimentary tract and functions to translocate water across tissues for maintenance of osmotic pressure and/or excretion of excess dietary fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号