首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Background aimsPrevious studies have demonstrated that the combination of granulocyte–colony-stimulating factor (G-CSF) + plerixafor is more efficient in mobilizing CD34+ hematopoietic stem cells (HSC) into the peripheral blood than G-CSF alone. In this study we analyzed the impact of adding plerixafor to G-CSF upon the mobilization of different HSC subsets.MethodsWe characterized the immunophenotype of HSC subsets isolated from the peripheral blood of eight patients with multiple myeloma (MM) before and after treatment with plerixafor. All patients were supposed to collect stem cells prior to high-dose chemotherapy and consecutive autologous stem cell transplantation, and therefore received front-line mobilization with 4 days of G-CSF followed by a single dose of plerixafor. Samples of peripheral blood were analyzed comparatively by flow cytometry directly before and 12 h after administration of plerixafor.ResultsThe number of aldehyde dehydrogenase (ALDH)bright and CD34+ cells was significantly higher after plerixafor treatment (1.2–5.0 and 1.5–6.0 times; both P < 0.01) and an enrichment of the very primitive CD34+ CD38? and ALDHbright CD34+ CD38? HSC subsets was detectable. Additionally, two distinct ALDH+ subsets could be clearly distinguished. The small ALDHhigh subset showed a higher number of CD34+ CD38? cells in contrast to the total ALDHbright subpopulation and probably represented a very primitive subpopulation of HSC.ConclusionsA combined staining of ALDH, CD34 and CD38 might represent a powerful tool for the identification of a very rare and primitive hematopoietic stem cell subset. The addition of plerixafor mobilized not only more CD34+ cells but was also able to increase the proportion of more primitive stem cell subsets.  相似文献   

2.
Background aimsThe number of hematopoietic stem cells (HSCs) is critical for transplantation. The ex vivo expansion of mobilized peripheral blood (MPB) HSCs is of clinical value for reconstitution to meet clinical need.MethodsThis study proposed a simple, defined, stromal-free and serum-free culture system (SF-HSC medium) for clinical use, which is composed of Iscove's modified Dulbecco's medium, cytokine cocktails and serum substitutes. This study also characterized the cellular properties of expanded MPB CD133+ HSCs from patients with hematologic malignancies and healthy donors by surface antigen, colony-forming cell, long-term culture-initiating cell, gene expression and in vivo engraftment assays.ResultsThe expanded fold values of CD45+ white blood cells and CD34+, CD133+, CD34+CD38?, CD133+CD38?, CD34+CD133+, colony-forming and long-term culture-initiating cells at the end of 7-day culture from CD133+ MPB of hematologic malignancies were 9.4-fold, 5.9-fold, 4.0-fold, 35.8-fold, 21.9-fold, 3.8-fold, 11.8-fold and 6.7-fold, and values from healthy donor CD133+ MPB were 20.7-fold, 14.5-fold, 8.5-fold, 83.8-fold, 37.3-fold, 6.2-fold, 19.1-fold and 14.6-fold. The high enrichment of CD38? cells, which were either CD34+ or CD133+, sustained the proliferation of early uncommitted HSCs. The expanded cells showed high levels of messenger RNA expression of HOBX4, ABCG2 and HTERT and had the in vivo ability to re-populate NOD/SCID mice.ConclusionsOur results demonstrated that an initial, limited number of MPB CD133+ HSCs could be expanded functionally in SF-HSC medium. We believe that this serum-free expansion technique can be employed in both basic research and clinical transplantation.  相似文献   

3.
Background aimsTransplantation of allogeneic hematopoietic stem cells (HSC) within the framework of hematologic oncology or inherited diseases may be associated with complications such as engraftment failure and long-term pancytopenia. HSC engraftment can be improved, for example by co-transplantation with mesenchymal stem cells (MSC). Recently, a new multipotent MSC line from umbilical cord blood, unrestricted somatic stem cells (USSC), has been described. It was demonstrated that USSC significantly support proliferation of HSC in an in vitro feeder layer assay.MethodsA NOD/SCID mouse model was used to assess the effect of USSC on co-transplanted CD34+ cells and look for the fate of transplanted USSC. The migration potential of USSC was studied in a Boyden chamber migration assay and in vivo. Quantitative real-time polymerase chain reaction (qRT-PCR) for CXCR4, CD44, LFA1, CD62L, VLA4, RAC2, VLA5A and RAC1 were performed. NMR1 nu/nu mice were used for a tumorigenicity test.ResultsAfter 4 weeks, homing of human cells (CD45+) to the bone marrow of NOD/SCID mice was significantly increased in mice co-transplanted with CD34+ cells and USSC (median 30.9%, range 7–50%) compared with the CD34+ cell-only control group (median 5.9%, range 3–10%; P = 0.004). Homing of USSC could not be shown in the bone marrow. A cell–cell contact was not required for the graft enhancing effect of USSC. An in vivo tumorigenicity assay showed no tumorigenic potential of USSC.ConclusionsThis pre-clinical study clearly shows that USSC have an enhancing effect on engraftment of human CD34+ cells. USSC are a safe graft adjunct.  相似文献   

4.
《Cytotherapy》2014,16(9):1280-1293
Background aimsInadequate engraftment of hematopoietic stem cells (HSCs) after in utero HSC transplantation (IUHSCT) remains a major obstacle for the prenatal correction of numerous hereditary disorders. HSCs express CXCR4 receptors that allow homing and engraftment in response to stromal-derived factor 1 (SDF-1) ligand present in the bone marrow stromal niche. Plerixafor, a mobilization drug, works through the interruption of the CXCR4-SDF-1 axis.MethodsWe used the fetal sheep large-animal model to test our hypotheses that (i) by administering plerixafor in utero before performing IUHSCT to release fetal HSCs and thus vacating recipient HSC niches, (ii) by using human mesenchymal stromal/stem cells (MSCs) to immunomodulate and humanize the fetal BM niches and (iii) by increasing the CXCR4+ fraction of CD34+ HSCs, we could improve engraftment. Human cord blood-derived CD34+ cells and human bone marrow-derived MSCs were used for these studies.ResultsWhen MSCs were transplanted 1 week before CD34+ cells with plerixafor treatment, we observed 2.80% donor hematopoietic engraftment. Combination of this regimen with additional CD34+ cells at the time of MSC infusion increased engraftment levels to 8.77%. Next, increasing the fraction of CXCR4+ cells in the CD34+ population albeit transplanting at a late gestation age was not beneficial. Our results show engraftment of both lymphoid and myeloid lineages.ConclusionsPrior MSC and HSC cotransplantation followed by manipulation of the CXCR4–SDF-1 axis in IUHSCT provides an innovative conceptual approach for conferring competitive advantage to donor HSCs. Our novel approach could provide a clinically relevant approach for enhancing engraftment early in the fetus.  相似文献   

5.
Since umbilical cord blood (UCB), contains a limited hematopoietic stem/progenitor cells (HSC) number, successful expansion protocols are needed to overcome the hurdles associated with inadequate numbers of HSC collected for transplantation. UCB cultures were performed using a human stromal‐based serum‐free culture system to evaluate the effect of different initial CD34+ cell enrichments (Low: 24 ± 1.8%, Medium: 46 ± 2.6%, and High: 91 ± 1.5%) on the culture dynamics and outcome of HSC expansion. By combining PKH tracking dye with CD34+ and CD34+CD90+ expression, we have identified early activation of CD34 expression on CD34? cells in Low and Medium conditions, prior to cell division (35 ± 4.7% and 55 ± 4.1% CD34+ cells at day 1, respectively), affecting proliferation/cell cycle status and ultimately determining CD34+/CD34+CD90+ cell yield (High: 14 ± 1.0/3.5 ± 1.4‐fold; Medium:22 ± 2.0/3.4 ± 1,0‐fold; Low:31 ± 3.0/4.4 ± 1.5‐fold) after a 7‐day expansion. Considering the potential benefits of using expanded UCB HSC in transplantation, here we quantified in single UCB units, the impact of using one/two immunomagnetic sorting cycles (corresponding to Medium and High initial progenitor content), and the average CD34+ cell recovery for each strategy, on overall CD34+ cell expansion. The higher cell recovery upon one sorting cycle lead to higher CD34+ cell numbers after 7 days of expansion (30 ± 2.0 vs. 13 ± 1.0 × 106 cells). In particular, a high (>90%) initial progenitor content was not mandatory to successfully expand HSC, since cell populations with moderate levels of enrichment readily increased CD34 expression ex‐vivo, generating higher stem/progenitor cell yields. Overall, our findings stress the importance of establishing a balance between the cell proliferative potential and cell recovery upon purification, towards the efficient and cost‐effective expansion of HSC for cellular therapy. J. Cell. Biochem. 112: 1822–1831, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

6.
The prevailing school of thought is that mesenchymal stromal cells (MSC) do not express CD34, and this sets MSC apart from hematopoietic stem cells (HSC), which do express CD34. However, the evidence for MSC being CD34? is largely based on cultured MSC, not tissue-resident MSC, and the existence of CD34? HSC is in fact well documented. Furthermore, the Stro-1 antibody, which has been used extensively for the identification/isolation of MSC, was generated by using CD34+ bone marrow cells as immunogen. Thus, neither MSC being CD34? nor HSC being CD34+ is entirely correct. In particular, two studies that analyzed CD34 expression in uncultured human bone marrow nucleated cells found that MSC (BMSC) existed in the CD34+ fraction. Several studies have also found that freshly isolated adipose-derived MSC (ADSC) express CD34. In addition, all of these ADSC studies and several other MSC studies have observed a disappearance of CD34 expression when the cells are propagated in culture. Thus the available evidence points to CD34 being expressed in tissue-resident MSC, and its negative finding being a consequence of cell culturing.  相似文献   

7.
Background aimsGranulocyte–macrophage (GM) colony-stimulating factor (CSF) has been used as an adjuvant in cancer immunotherapy. We tested the hypothesis that GM-CSF (Leukine®; sargramostim) improves immune reconstitution after hematopoietic stem cell transplantation (HSCT) based on our prior in vitro work that demonstrated the pro-inflammatory effects of GM-CSF on dendritic cells (DC).MethodsGM-CSF was administered to donors, along with standard granulocyte (G) CSF, during stem cell mobilization, and to recipients from the day prior to transplant until engraftment. Eighteen patients consented to the GM-CSF+ protocol and were compared with 17 matched controls undergoing HSCT during the same time period (GM-CSF?).ResultsNumbers of white blood cells (WBC) and CD34+ stem cells in the graft were comparable to controls. Surprisingly, contrary to our hypothesis, the allogeneic donor graft had significantly decreased numbers of CD3+ T cells and their subsets (CD4+, CD4+ CD45RA+, CD4+ CD45RO+, CD8+ and CD8+ CD45RO+), DC (both myeloid and plasmacytoid) and natural killer (NK) cells (CD16+ CD56+). In the GM-CSF arm, following allogeneic transplantation, the levels of DC, T cells and NK cells did not increase with treatment. Conversely, autologous transplant patients receiving GM-CSF had a higher proportion of DC at the time of engraftment.ConclusionsThese findings demonstrate that administration of GM-CSF improves DC reconstitution after autologous rather than allogeneic HSCT.  相似文献   

8.
The molecular mechanisms underlying hematopoietic stem cell (HSC) aging remain to be elucidated. In this study, we investigated age-related changes in the functional and phenotypic properties of murine HSCs. Consistent with previous studies, we found that the number and frequency of CD34−/lowc-Kit+Sca-1+lineage marker (CD34KSL) cells, a highly enriched HSC population, significantly increased in old mice, though their repopulating ability was reduced. Continuous bromodeoxyuridine labeling revealed a significant delay in the cell cycle progression of CD34KSL cells in old mice. This delay was also observed in young recipients transplanted with whole bone marrow cells from old mice. When cultured in vitro, CD34KSL cells from old mice showed a greater capacity to give rise to primitive CD48KSL cells with reduced HSC activity. Gene expression profiling identified age-related changes in the expression of several cell cycle regulatory genes, including p21/Cdkn1a and p18/Cdkn2c. These results support the notion that HSC aging is largely regulated by an intrinsic genetic program.  相似文献   

9.
BackgroundLongitudinal characterization of immune recovery in the first-phase of antiretroviral therapy (ART) is poorly described. We compared immune kinetics in individuals who were diagnosed early or late with HIV-1 infection, (thus commencing ART with different CD4+ T-cell counts), in order to investigate possible mechanisms involved in subsequent poor immune recovery.MethodsImmunophenotyping, immune activation, proliferation, apoptosis, regulatory T-cells and intracellular cytokine production were compared at baseline and during 24-week follow-up in two groups of HIV-1-infected patients initiating the same ART (tenofovir/emtricitabine/efavirenz) and divided according to baseline CD4+ T-cell counts (late: ≤200/μL; early: >200/μL). Wilcoxon-rank sum test and analysis for repeated measures were used to evaluate differences between groups over time.ResultsTwenty-four out of 30 enrolled subjects were evaluable for the analysis, 13 late and 11 early presenters. Significantly lower CD4+ naïve and memory T-cells, and higher plasma viral load, as well as augmented percentages of activated (CD4+/CD25+ cells), apoptotic (CD4+/AnnexinV+/7AAD, CD4+/caspase 8+ and CD4+/caspase 9+), and proliferating (CD8+/Ki67+ cells) lymphocytes were present at baseline in late presenters; ART resulted in a reduction of apoptotic and proliferating lymphocytes within the follow-up period.ConclusionsA skewing towards memory/activated/apoptotic phenotype is seen in HIV-1-infected subjects starting ART at low CD4+ T-cell counts; ART results in early (24 weeks) trend towards normalization of these parameters. Antiretroviral therapy may play a role in rapidly limiting aberrant immune exhaustion even in late presenters, while requiring more time for re-population of highly depleted naïve T-cells.

Trial Registration

EU Clinical Trial Register EUDRACT number 2008-006188-35 https://www.clinicaltrialsregister.eu/ctr-search/trial/2008-006188-35/IT  相似文献   

10.
Background aimsDelayed neutrophil recovery following autologous hematopoietic stem cell transplantation (aHSCT) increases transplant-related morbidity. Apoptosis induced by cryopreservation and thawing of hematopoietic progenitor cells collected by apheresis (HPC-A) was investigated in this nested case-control study as a factor associated with delayed neutrophil recovery following aHSCT.MethodsAmong patients with lymphoma who underwent aHSCT between 2000 and 2007 (n = 326), 13 cases of primary delayed neutrophil recovery and 22 age- and sex-matched controls were identified. Apoptosis and viability were measured using multiparameter flow cytometry, and colony-forming capacity was determined using semi-solid methylcellulose assays.ResultsHPC-A grafts from cases and controls had similar percentages of viable mononuclear cells (MNC) and CD34+progenitor cells, as determined by standard 7AAD dye exclusion methods measured before and after cryopreservation. Patients with delayed neutrophil recovery received increased numbers of apoptotic MNC (P = 0.02) but similar numbers of apoptotic CD34+ cells per kilogram measured after thawing. Apoptosis was more pronounced in MNC compared with CD34+ cells after thawing, and apoptosis was negligible in freshly collected HPC-A products. Patients with delayed neutrophil recovery had fewer total colony-forming unites (CFU) and CFU-granulocyte–macrophages (GM) per 105 viable post-thaw MNC compared with controls (P < 0.05).ConclusionsIncreased numbers of apoptotic MNC in thawed HPC-A products are associated with delayed neutrophil recovery after aHSCT. Studies that address factors contributing to increased apoptosis are needed, and measuring apoptosis in thawed HPC-A may have a role in the assessment of graft adequacy.  相似文献   

11.
《Cytotherapy》2023,25(8):877-884
Background aimsAllogeneic hematopoietic stem cell transplantation (allo-SCT) is a curative treatment for chemo-resistant hematological malignancies. Because of transport restriction imposed by the coronavirus disease 2019 pandemic, regulatory bodies and societies recommended graft cryopreservation before recipient conditioning. However, the freezing and thawing processes, including washing steps, might impair CD34+ cell recovery and viability, thereby impacting the recipient engraftment. Over 1 year (between March 2020 and May 2021), we aimed to analyze the results of frozen/thawed peripheral blood stem cell allografts in terms of stem cell quality and clinical outcomes.MethodsTransplant quality was evaluated by comparing total nucleated cells (TNCs), CD34+ cells and colony-forming unit–granulocyte/macrophage (CFU-GM)/kg numbers as well as TNC and CD34+ cell viabilities before and after thawing. Intrinsic biological parameters such as granulocyte, platelet and CD34+ cell concentrations were analyzed, as they might be responsible for a quality loss. The impact of the CD34+ cell richness of the graft on TNC and CD34 yields was evaluated by designing three groups of transplants based on their CD34 /kg value at collection: >8 × 10 6/kg, between 6 and 8 × 106/kg and <6 × 106/kg. The consequences of cryopreservation were compared in the fresh and thawed group by evaluating the main transplant outcomes.ResultsOver 1 year, 76 recipients were included in the study; 57 patients received a thawed and 19 patients a fresh allo-SCT. None received allo-SCT from a severe acute respiratory syndrome coronavirus 2–positive donor. The freezing of 57 transplants led to the storage of 309 bags, for a mean storage time (between freezing and thawing) of 14 days. For the fresh transplant group, only 41 bags were stored for potential future donor lymphocyte infusions. Regarding the graft characteristics at collection, median number of cryopreserved TNC and CD34+ cells/kg were greater than those for fresh infusions. After thawing, median yields were 74.0%, 69.0% and 48.0% for TNC, CD34+ cells and CFU-GM, respectively. The median TNC dose/kg obtained after thawing was 5.8 × 108, with a median viability of 76%. The median CD34+ cells/kg was 5 × 106, with a median viability of 87%. In the fresh transplant group, the median TNC/kg was 5.9 × 108/kg, and the median CD34+ cells/kg and CFU-GM/kg were 6 × 106/kg and 276.5 × 104/kg, respectively. Sixty-one percent of the thawed transplants were out of specifications regarding the CD34+ cells/ kg requested cell dose (6 × 106/kg) and 85% of them would have had this dose if their hematopoietic stem cell transplant had been infused fresh. Regarding fresh grafts, 15.8% contained less than 6 × 106 CD34+ cells /kg and came from peripheral blood stem cells that did not reach 6 × 106 CD34+ cells /kg at collection. Regarding the factor that impaired CD34 and TNC yield after thawing, no significant impact of the granulocyte count, the platelet count or the CD34+ cells concentration/µL was observed. However, grafts containing more than 8 × 10 6/kg at collection showed a significantly lower TNC and CD34 yield.ConclusionsTransplant outcomes (engraftment, graft-versus-host disease, infections, relapse or death) were not significantly different between the two groups.  相似文献   

12.
Background aimsThe distinction between hematopoietic stem cells (HSC) and endothelial progenitor cells (EPC) is poorly defined. Co-expression of CD34 antigen with vascular endothelial growth factor (VEGF) receptor (VEGFR2) is currently used to define EPC (1).MethodsWe evaluated the phenotypic and genomic characteristics of peripheral blood-derived CD34+ cells in 22 granulocyte–colony-stimulating factor (G-CSF)-mobilized patients with severe coronary artery disease and assessed the influence of cell selection and storage on CD34+ cell characteristics.ResultsThe median CD34+ cell contents in the products before and after enrichment with the Isolex 300i Magnetic Cell Selection System were 0.2% and 82.5%, respectively. Cell-cycle analysis showed that 80% of CD34+ cells were in G0 stage; 70% of the isolated CD34+ cells co-expressed CD133, a marker for more immature progenitors. However, less than 5% of the isolated CD34+ cells co-expressed the notch receptor Jagged-1 (CD339) and only 2% of the isolated CD34+ population were positive for VEGFR2 (CD309). Molecular assessment of the isolated CD34+ cells demonstrated extremely low expression of VEGFR2 and endothelial nitric oxide synthase (eNOS) and high expression of VEGF-A. Overnight storage at 4°C did not significantly affect CD34+ cell counts and viability. Storage in liquid nitrogen for 7 weeks did not affect the percentage of CD34+ cells but was associated with a 26% drop in cell viability.ConclusionsWe have demonstrated that the majority of isolated CD34+ cells consist of immature and quiescent cells that lack prototypic markers of EPC. High VEGF-A gene expression might be one of the mechanisms for CD34+ cell-induced angiogenesis.  相似文献   

13.
14.
We have investigated the blood levels of sub-classes of stem cells (SCs) [mesenchymal stem cells (MSCs), haematopoietic stem cells (HSCs), endothelial progenitor cells/circulating endothelial cells (EPCs/CECs) and tissue-committed stem cells (TCSCs)] in heart failure (HF) patients at different stage of pathology and correlated it with plasmatic levels of proangiogenic cytokines. Peripheral blood level of SCs were analysed in 97 HF patients (24 in NYHA class I, 41 in class II, 17 in class III and 15 in class IV) and in 23 healthy controls. Plasmatic levels of PDGF-BB, bFGF, HGF, vascular endothelial growth factor (VEGF), SDF-1α, TNF-α and NTproBNP were also measured. Compared with healthy individuals, MSC, and in particular the sub-classes CD45CD34CD90+, CD45CD34CD105+ and CD45CD34CXCR4+ were significantly enhanced in NYHA class IV patients (16.8-, 6.4- and 2.7-fold, respectively). Level of CD45CD34CD90+CXCR4+cells progressively increased from class II to class IV (fold increases compared with controls: 8.5, 12 and 21.5, respectively). A significant involvement of CXCR4+ subpopulation of HSC (CD45+CD34+CD90+CXCR4+, 1.4 versus 13.3 cells/μl in controls and NYHA class III patients, respectively) and TCSC (CD45CD34+CXCR4+, 1.5 cells/ μl in controls versus 12.4 and 28.6 cells/μl in NYHA classes II and IV, respectively) were also observed. All tested cytokines were enhanced in HF patients. In particular, for PDGF-BB and SDF-1α we studied specific ligand/receptors pairs. Interestingly, the first one positively correlated with TCSCs expressing PDGFR (r = 0.52, P = 0.001), whereas the second one correlated with TCSCs (r = 0.34, P = 0.005) and with MSCs CD90+ expressing CXCR4 (r = 0.39, P = 0.001). HF is characterized by the increase in the circulating levels of different MSC, HSC, EPC and TCSC subsets. Both the entity and kinetic of this process varied in distinct cell subsets. Specifically, differently from HSCs and EPCs/CECs, MSCs and TCSCs significantly increased with the progression of the disease, suggesting a possible distinct role of these cells in the pathophysiology of HF.  相似文献   

15.
G-CSF mobilized peripheral blood and cord blood are major sources of hematopoietic progenitor cells. These cells are characterized by expression of “early” antigens. We have evaluated the coexpression of hematopoietic markers CD34, CD133, CD90, CDCP1, and CD117 and activation antigen CD38 using multicolor flow cytometry. We showed that cells positive for each particular antigen generate a separate population. The percentage of cells expressing each particular “early” antigen is twice as high in the cord blood as in the mobilized blood. The cell number with complex progenitor phenotype (CD34+/CD38?/CD117?, CD133+/CD34+/CD38?, CDCP1+/CD34+/CD38?, etc.) is equal in mobilized and cord blood. There is a strong positive correlation between CD34, CD133, CD117, and CDCP1 expression in both groups. Positive correlation was observed between CD90 and CD34, CD133, CDCP1, and CD117 expression only in cord blood; it was not significant in mobilized blood. The analyses of early antigens’ coexpression with activation CD38 marker did not confirm the hypothesis of sequential activation and loss of expression of the aforementioned antigens. We assume that there is global regulation of CD34, CD133, CDCP1, and CD117 expression. Expression of CD38 may be reversibly suppressed during maturation of the hematopoietic cells, and CD117 may be expressed on not only myeloid cells.  相似文献   

16.
Human hematopoietic stem/progenitor cells (HSC) isolated based upon specific patterns of CD34 and CD38 expression, despite phenotypically identical, were found to be functionally heterogeneous, raising the possibility that reversible expression of these antigens may occur during cellular activation and/or proliferation. In these studies, we combined PKH67 tracking with CD34/CD38 immunostaining to compare cell division kinetics between human bone marrow (BM) and cord blood (CB)‐derived HSC expanded in a serum‐free/stromal‐based system for 14 days (d), and correlated CD34 and CD38 expression with the cell divisional history. CB cells began dividing 24 h earlier than BM cells, and significantly higher numbers underwent mitosis during the time in culture. By d10, over 55% of the CB‐cells reached the ninth generation, whereas BM‐cells were mostly distributed between the fifth and seventh generation. By d14, all CB cells had undergone multiple cell divisions, while 0.7–3.8% of BM CD34+ cells remained quiescent. Furthermore, the percentage of BM cells expressing CD34 decreased from 60.8 ± 6.3% to 30.6 ± 6.7% prior to initiating division, suggesting that downmodulation of this antigen occurred before commencement of proliferation. Moreover, with BM, all primitive CD34+CD38? cells present at the end of culture arose from proliferating CD34+CD38+ cells that downregulated CD38 expression, while in CB, a CD34+CD38? population was maintained throughout culture. These studies show that BM and CB cells differ significantly in cell division kinetics and expression of CD34 and CD38, and that the inherent modulation of these antigens during ex vivo expansion may lead to erroneous quantification of the stem cell content of the expanded graft. J. Cell. Physiol. 220: 102–111, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
《Cytotherapy》2014,16(6):845-856
Background aimsCytokine-induced killer (CIK) cells ex vivo–expanded from cord blood (CB) or peripheral blood (PB) have been shown to be cytotoxic against autologous and allogeneic tumor cells. We have previously shown that CD56+ CIK cells (CD3+CD56+ and CD3CD56+) are capable of killing precursor B-cell acute lymphoblastic leukemia (B-ALL) cell lines. However, the lytic pathways used by CD56+ PB and CB-CIK cells to kill B-ALL cell lines have not been studied.MethodsCB and PB-CIK cells were differentiated. CD56+ CB- and PB-CIK cells were compared for expression of different phenotypic markers and for the lytic pathways used to kill B-ALL cell lines.ResultsWe found that cytotoxic granule proteins were expressed at higher levels in CD56+ PB-CIK than in CD56+ CB-CIK cells. However, CD56+ CB-CIK cells expressed more tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) compared with CD56+ PB-CIK cells. We observed that CD56+ CB-CIK cells used both the NKG2D and TRAIL cytotoxic pathways and were more effective at killing REH cells than CD56+ PB-CIK cells that used only the NKG2D pathway. In contrast, CD56+ PB-CIK cells used both NKG2D and TRAIL pathways to kill NALM6 cells, whereas CD56+ CB-CIK cells used only the NKG2D pathway.ConclusionsOur results suggest that both the source of CIK and the type of B-ALL cell line have an impact on the intensity of the cytolytic activity and on the pathway used. These findings may have clinical implications with respect to optimizing therapeutic efficacy, which may be dependent on the source of the CIK cells and on the target tumor cells.  相似文献   

18.
Background aimsMesenchymal stromal cells (MSC) with similar properties to bone marrow-derived mesenchymal stromal cells (BM-MSC) have recently been grown from the limbus of the human cornea. We have evaluated methods for culturing human limbal MSC (L-MSC).MethodsFour basic strategies were compared: serum-supplemented medium (10% fetal bovine serum; FBS), standard serum-free medium supplemented with B-27, epidermal growth factor and fibroblast growth factor 2, or one of two commercial serum-free media, defined keratinocyte serum-free medium (Invitrogen) and MesenCult-XF® (Stem Cell Technologies). The resulting cultures were examined using photography, flow cytometry (for CD34, CD45, CD73, CD90, CD105, CD141 and CD271), immunocytochemistry (alpha-smooth muscle actin; α-sma), differentiation assays (osteogenesis, adipogenesis and chrondrogenesis) and co-culture experiments with human limbal epithelial (HLE) cells.ResultsWhile all techniques supported the establishment of cultures to varying degrees, sustained growth and serial propagation were only achieved in 10% FBS medium or MesenCult-XF medium. Cultures established in 10% FBS medium were 70–80% CD34? CD45? CD90+ CD73+ CD105+, approximately 25% α-sma+ and displayed multipotency. Cultures established in MesenCult-XF were > 95% CD34? CD45? CD90+ CD73+ CD105+, 40% CD141+, rarely expressed α-sma, and displayed multipotency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of MesenCult-XF-grown L-MSC. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker ?Np63, along with the corneal differentiation marker cytokeratin 3.ConclusionsMesenCult-XF is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells.  相似文献   

19.
Background aimsInterleukin (IL)-15 and fms-like tyrosine kinase-3 (FLT-3) are crucial factors for the development of human and murine natural killer (NK) cells. Previously, we have demonstrated significant ex vivo expansion and activation of unrelated cord blood (UCB) NK cells with an antibody/cytokine cocktail consisting of anti-CD3 + IL-2 + IL-12 + IL-7 and anti-CD3 + IL-2 + IL-12 + IL-18.MethodsIn the current experiments, we investigated the effects of short-term culture with anti-CD3 + IL-2 + FLT-3 + IL-15 on cord blood (CB) NK cell and NK-cell subset expansion and function. CB mononuclear cells were cultured for 48 h in AIM-V media or AIM-V + IL-2 (5 ng/mL) + anti-CD3 (50 ng/mL) + FLT-3 (50 ng/mL) ± escalating doses of IL-15 (1, 10 or 100 ng/mL). Flow cytometric analysis was performed using various fluorescent-conjugated monoclonal antibodies. In vitro cytotoxicity was determined with a standard europium assay against K562 and Daudi cells.ResultsThere was a 4.8-fold significant increase in NK-cell population (CD3?/16+/56+; P < 0.03), 21-fold significant increase in CD3?/56+/158a+ (KIR2DL1/S1; P < 0.002), 46-fold significant increase in CD3?/56+/158b+ (KIR2DL1/S2; P < 0.002) and 11.5-fold significant increase in CD3?/56+/NKB1+ (KIR3DL1; P < 0.01). We also noted a significant increase in both NK and lymphokine-activated killer (LAK) cytotoxicity with IL-2 + anti-CD3 + FLT-3 + IL-15 (100 ng/mL) compared with IL-2 + anti-CD3 + FLT-3 and media alone against K562 (P < 0.01) and Daudi (P < 0.001), respectively.ConclusionsWe have demonstrated a significant increase in UCB NK cells and NK cells expressing a variety of killer immunoglobulin-like receptor (KIR) receptors after short-term culture with anti-CD3, IL-2, FLT-3 and IL-15. Furthermore, there was a significant increase in in vitro NK/LAK cell cytotoxicity.  相似文献   

20.
Notch signalling is critical for haemopoietic stem cell (HSC) self-renewal and survival. The role of Notch signalling has been reported recently in chronic myeloid leukaemia (CML) – a stem cell disease characterized by BCR-ABL tyrosine kinase activation. Therefore, we studied the relationship between BCR-ABL and Notch signalling and assessed the expression patterns of Notch and its downstream target Hes1 in CD34+ stem and progenitor cells from chronic-phase CML patients and bone marrow (BM) from normal subjects (NBM). We found significant upregulation (p<0.05) of Notch1, Notch2 and Hes1 on the most primitive CD34+Thy+ subset of CML CD34+ cells suggesting that active Notch signalling in CML primitive progenitors. In addition, Notch1 was also expressed in distinct lymphoid and myeloid progenitors within the CD34+ population of primary CML cells. To further delineate the possible role and interactions of Notch with BCR-ABL in CD34+ primary cells from chronic-phase CML, we used P-crkl detection as a surrogate assay of BCR-ABL tyrosine kinase activity. Our data revealed that Imatinib (IM) induced BCR-ABL inhibition results in significant (p<0.05) upregulation of Notch activity, assessed by Hes1 expression. Similarly, inhibition of Notch leads to hyperactivation of BCR-ABL. This antagonistic relationship between Notch and BCR-ABL signalling was confirmed in K562 and ALL-SIL cell lines. In K562, we further validated this antagonistic relationship by inhibiting histone deacetylase (HDAC) - an effector pathway of Hes1, using valproic acid (VPA) - a HDAC inhibitor. Finally, we also confirmed the potential antagonism between Notch and BCR/ABL in In Vivo, using publically available GSE-database, by analysing gene expression profile of paired samples from chronic-phase CML patients pre- and post-Imatinib therapy. Thus, we have demonstrated an antagonistic relationship between Notch and BCR-ABL in CML. A combined inhibition of Notch and BCR-ABL may therefore provide superior clinical response over tyrosine-kinase inhibitor monotherapy by targeting both quiescent leukaemic stem cells and differentiated leukaemic cells and hence must be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号