首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
The data obtained indicate that spontaneous mutations in Saccharomyces cerevisiae are formed during DNA replication. With no DNA replication in the lag-period, in the stationary growth phase, spontaneous mutations are not formed in cell culture during the G1 phase of cell cycle. Experimental data show the absence of primary spontaneously occurring DNA lesion accumulation in the cell G1 phase. Spontaneous mutations of yeasts are formed in the S phase of cell cycle, apparently as DNA replication errors. It is established that the frequency of spontaneous reversions of the leu2 gene in Saccharomyces cerevisiae strain NA3-24 increases when the cells are cultivated on the culture medium with different concentrations of leucine.  相似文献   

2.
Multiple strains of Saccharomyces cerevisiae on a single grape vine   总被引:1,自引:0,他引:1  
M. POLSINELLI, P. ROMANO, G. SUZZI AND R. MORTIMER. 1996. On the basis of the levels of secondary product formation four different phenotypes were represented among the 28 strains of Saccharomyces cerevisiae isolated during the spontaneous fermentation of grape juice. The genetic analysis indicated that four different strains, representing each phenotypic class, were derived, one from the other, by mutation. The spontaneous fermentation of a Malvasia must was dominated by different strains of Saccharomyces cerevisiae at different stages of fermentation.  相似文献   

3.
The role of RAD52 epistasis group genes on spontaneous mitotic recombination was examined using three different types of spontaneous mitotic recombination in Saccharomyces cerevisiae. The spontaneous recombination between homologous sequences in a plasmid and a chromosome was essentially unaffected by null mutations in any of the RAD52 epistasis group genes. Recombination between genes in separate autonomously replicating plasmids was reduced 833-fold in a rad52 null mutant, but only 2- to at most 20-fold in rad50, 51, 54, 55, 57 null mutants. Recombination between tandemly repeated heteroalleles in an autonomously replicating plasmid was reduced almost 100-fold in a rad52 null mutant, but is either unaffected or slightly increased in rad50, 51, 54, 55, 57 null mutants. The finding that RAD50, 51, 54, 55, 57 are dispensable or marginally involved in these spontaneous recombinations suggests further that spontaneous mitotic recombination in S. cerevisiae might be processed by other than RAD52 epistasis group.  相似文献   

4.
Humans have used S. cerevisiae to make alcoholic beverages for at least 5000 years and now this super-model research organism is central to advances in our biological understanding. Current models for S. cerevisiae suggest that its population comprises distinct domesticated and natural groups as well as mosaic strains, but we generally know little of the forces which shape its population structure. In order to test the roles that ecology and geography play in shaping the S. cerevisiae species we examined nine variable microsatellite loci in 172 strains of S. cerevisiae isolated from two spontaneous grape juice ferments, soil, flowers, apiaries and bark in New Zealand. Bayesian analysis shows that the S. cerevisiae in NZ comprise a subdivided but interbreeding population that out-crosses ∼20% of the time. Some strains contributing to spontaneous ferments cluster with NZ soil/bark isolates, but others cluster with isolates from French oak barrels. It seems some strains have been globally dispersed by humans in oak barrels while some are locally vectored by insects. These data suggest geography is more important than ecology in shaping S. cerevisiae 's population structure.  相似文献   

5.
There appears to be no dearth of mechanisms to explain spontaneous mutagenesis. In the case of base substitutions, data for bacteriophage T4 and especially for E. coli and S. cerevisiae suggest important roles in spontaneous mutagenesis for the error-prone repair of DNA damage (to produce mutations) and for error-free repair of DNA damage (to avoid mutagenesis). Data from the very limited number of studies on the subject suggest that about 50% of the spontaneous base substitutions in E. coli, and perhaps 90% in S. cerevisiae are due to error-prone DNA repair. On the other hand, spontaneous frameshifts and deletions seem to result from mechanisms involving recombination and replication. Spontaneous insertions have been shown to be important in the strongly polar inactivation of certain loci, but it is less important at other loci. Perhaps with continued study, the term "spontaneous mutagenesis" will be replaced by more specific terms such as 5-methylcytosine deamination mutagenesis, fatty acid oxidation mutagenesis, phenylalanine mutagenesis, and imprecise-recombination mutagenesis. While most studies have concentrated on mutator mutations, the most conclusive data for the actual source of spontaneous mutations have come from the study of antimutator mutations. Further study in this area, perhaps along with an understanding of chemical antimutagens, should be invaluable in clarifying the bases of spontaneous mutagenesis.  相似文献   

6.
In the yeast Saccharomyces cerevisiae the disomy for chromosome XIV resembles the previously described disomy for chromosome IV in that it leads to a significant decrease in spontaneous rho- mutability. The nuclear srm1 mutation, reducing spontaneous rho- mutability, diminishes significantly the mitotic disome stability. So, the mechanisms of spontaneous rho- mutagenesis and mitotic disome stability seem to compete for the function affected by the srm1 mutation.  相似文献   

7.
The origin of the Saccharomyces cerevisiae strains that are responsible for spontaneous grape must fermentation was investigated in a long-established industrial winery by means of two different approaches. First, seven selected components of the analytical profiles of the wines produced by 58 strains of S. cerevisiae isolated from different sites and phases of the production cycle of a Grechetto wine were subjected to Principal Components Analysis. Secondly, the same S. cerevisiae isolates underwent PCR fingerprinting by means of delta primers. The results obtained by both methods demonstrate unequivocally that under real vinification conditions, the S. cerevisiae strains colonising the winery surfaces are the ones that carry out the natural must fermentation.  相似文献   

8.
An ecological study of Saccharomyces cerevisiae strains in spontaneous alcoholic fermentation has been conducted in the same winery for two consecutive years (1994 and 1995). Yeast cells were identified and characterized using mitochondrial DNA restriction analysis. Although a great diversity of wild strains was observed, a sequential substitution of S. cerevisiae strains during the different phases of fermentation was detected. Furthermore, the most frequent strains were encountered in both years, and the dynamic populations were not influenced by climatic conditions. Finally, the Rsa I restriction enzyme produced a species-specific pattern which allowed the identification of all the isolates as S. cerevisiae .  相似文献   

9.
Indigenous fermented foods and beverages play a major role in the diet of African people. The predominant yeast species seen is Saccharomyces cerevisiae, involved in basically three groups of indigenous fermented products: non-alcoholic starchy foods, alcoholic beverages and fermented milk. These products are to a great extent made by spontaneous fermentation and consequently S. cerevisiae often coexists with other microorganisms even though a microbiological succession usually takes place both between and within species. The functions of S. cerevisiae are mainly related to formation of alcohols and other aroma compounds, but stimulation of e.g. lactic acid bacteria, improvement of nutritional value, probiotic effects, inhibition of undesired microorganisms and production of tissue-degrading enzymes may also be observed. Several different isolates of S. cerevisiae have been shown to be involved in the fermentations and some of the isolates show pheno- and genotypic characteristics that deviate from those normally recognised for S. cerevisiae.  相似文献   

10.
M Fasullo  P Giallanza  Z Dong  C Cera  T Bennett 《Genetics》2001,158(3):959-972
Saccharomyces cerevisiae Rad51 is structurally similar to Escherichia coli RecA. We investigated the role of S. cerevisiae RAD51 in DNA damage-associated unequal sister chromatid exchanges (SCEs), translocations, and inversions. The frequency of these rearrangements was measured by monitoring mitotic recombination between two his3 fragments, his3-Delta5' and his3-Delta3'::HOcs, when positioned on different chromosomes or in tandem and oriented in direct or inverted orientation. Recombination was measured after cells were exposed to chemical agents and radiation and after HO endonuclease digestion at his3-Delta3'::HOcs. Wild-type and rad51 mutant strains showed no difference in the rate of spontaneous SCEs; however, the rate of spontaneous inversions was decreased threefold in the rad51 mutant. The rad51 null mutant was defective in DNA damage-associated SCE when cells were exposed to either radiation or chemical DNA-damaging agents or when HO endonuclease-induced double-strand breaks (DSBs) were directly targeted at his3-Delta3'::HOcs. The defect in DNA damage-associated SCEs in rad51 mutants correlated with an eightfold higher spontaneous level of directed translocations in diploid strains and with a higher level of radiation-associated translocations. We suggest that S. cerevisiae RAD51 facilitates genomic stability by reducing nonreciprocal translocations generated by RAD51-independent break-induced replication (BIR) mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号