首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.
  • 1 In natural populations, colonies of bumble bees vary in many important life history traits, such as colony size and age at maturity, or the number and sex of reproductives produced. We investigated how the presence of parasites in field populations of the bumble bee Bombus lucorum L. relates to variation in life history traits and reproductive performance. A total of thirty-six colonies was placed in accessible nest sites in the field and monitored at regular intervals throughout a season.
  • 2 Among the life history correlates, early nest foundation was strongly associated with large maximum colony size, old age and large size at maturity, and this in turn with successful production of males and queens, as well as with the number of sexuals produced. Overall, reproductive success was highly skewed with only five colonies producing all the queens. Sixteen colonies failed to reproduce altogether.
  • 3 The social parasite Psithyrus was abundant early in the Bombus colony cycle and preferentially invaded host nests with many first brood workers and thus disproportionately large size, i.e. those colonies that would otherwise be more likely to reproduce or produce (daughter) queens rather than males. To prevent nest loss, Psithyrus had to be removed soon after invasion. Therefore, the effects reported here can only be crude estimates.
  • 4 Parasitoid conopid flies are likely to cause heavy worker mortality when sexuals are reared by the colonies. Their inferred effect was a reduction in biomass that could be invested in sexuals as well as a shift in the sex ratio at the population level resulting from failure to produce queens. We suggest to group the inferred correlates into ‘early events’ surrounding colony initiation and social parasitism, and ‘late events’ surrounding attained colony size in summer and parasitism by conopid flies. Our evidence thus provides a heuristic approach to understand the factors that affect reproductive success of Bombus colonies.
  相似文献   

2.
The occurrence of multiple reproductives within an ant colony changes the balance between indirect fitness benefits and reproductive competition. We test whether the number of matings by an ant queen (polyandry) correlates negatively with the number of reproductive queens in the colony (polygyny), whether the patrilines and matrilines differ in their contribution to the sexual and worker progeny and whether there is an overall reproductive skew. For these aims, we genotyped both worker and sexual offspring from colonies of the ant Formica sanguinea in three populations. Most colonies were monogynous, but eight (11%) were polygynous with closely related queens. Most queens in the monogynous colonies (86%) had mated with multiple males. The effective paternity was lower than the actual number of mates, and the paternity skew was significant. Furthermore, in some monogynous colonies, the patrilines were differently represented in the worker pupae and sexual pupae produced at the same time. Likewise, the matrilines in polygynous colonies were differently present in worker pupae and male offspring. The effective number of matings by a queen was significantly lower in polygynous colonies (mean me = 1.68) than in monogynous colonies (means 2.06–2.61). The results give support to the hypotheses that polyandry and polygyny are alternative breeding strategies and that reproductive competition can lead to different representation of patrilines and matrilines among the sexual and worker broods.  相似文献   

3.
1. Bumblebee colonies show much variation in the number of workers, drones, and queens produced. Because this variation prevails even when colonies are kept under identical conditions, it does not seem to be caused by extrinsic factors but rather by differences between founding queens. 2. The most likely factor that could cause differences between queens is diapause. Although colonies are raised under standardised conditions, the queens often experience diapause of different length. If there are costs associated with diapause that influence post‐diapause reproduction, the diapause history of the queens could affect colony characteristics. 3. Here, several colony characteristics are compared: number of first and second brood workers; total number of workers, drones, and queens; energy spent on sexuals; sex ratio; rate of worker production; time to emergence of first reproductive; and colony lifetime. Colonies were used where the queens experienced a diapause treatment of 0 (nondiapause queens), 2, and 4 months. 4. Although no proof was found for the existence of costs associated with diapause, the colony characteristics of nondiapause queens were significantly different from those of diapause queens. Colonies of nondiapause queens produced the lowest number of workers but the highest number of young queens. 5. It is argued that these nondiapause colonies are more time‐constrained than diapause colonies because nondiapause colonies produce two generations within the same season and should therefore be more efficient in producing sexual offspring. 6. Moreover, nondiapause colonies should rear a more female‐biased sex ratio because they can be certain of the presence of males produced by other (diapause) colonies.  相似文献   

4.
Inbreeding can lead to the expression of deleterious recessive alleles and to a subsequent fitness reduction. In Hymenoptera, deleterious alleles are purged in haploid males moderating inbreeding costs. However, in these haplodiploid species, inbreeding can result in the production of sterile diploid males. We investigated the effects of inbreeding on the individual and colony level in field colonies of the highly inbred ant Hypoponera opacior. In this species, outbreeding winged sexuals and nest‐mating wingless sexuals mate during two separate reproductive periods. We show that regular sib‐matings lead to high levels of homozygosity and the occasional production of diploid males, which sporadically sire triploid offspring. On the individual level, inbreeding was associated with an increased body size in workers. On the colony level, we found no evidence for inbreeding depression as productivity was unaffected by the level of homozygosity. Instead, inbred colonies altered their allocation strategies by investing more resources into sexuals than into workers. This shift towards sexual production was due to an increased investment in both males and queens, which was particularly pronounced in the dispersive generation. The absence of inbreeding depression combined with increased reproductive investment, especially in outbreeding sexuals, suggests that these ants have evolved active strategies to regulate the extent and effects of frequent inbreeding.  相似文献   

5.
Summary. In a few, scattered species of social Hymenoptera, unmated workers are capable of producing female offspring from unfertilized eggs through thelytokous parthenogenesis. Regular thelytoky has previously been demonstrated in a number of populations of the neotropical ant Platythyrea punctata. Nevertheless, the finding of males and inseminated queens and workers suggested the sporadic occurrence of sex. In this study we investigated the genetic structure of colonies from Puerto Rico and Costa Rica in order to detect traces of occasional sexual reproduction. Most Puerto Rican colonies had a clonal structure with all nestmates sharing the same multilocus genotype, indicating that thelytoky is the predominant mode of reproduction. Genetic variability was detected in six of 18 colonies and might have arisen from adoption of alien workers in one colony and from the adoption of alien workers, recombination during parthenogenesis, or sexual reproduction in the other colonies. The reproductive of one of these latter colonies was found to be an inseminated worker (gamergate), and the genotypes of its nestmates definitively suggested recombination and sexual reproduction. Three gamergates were found in a single colony collected in Costa Rica, and all produced offspring from fertilized eggs, while uninseminated workers were apparently incapable of reproducing by thelytoky.Received 10 August 2004; revised 20 October 2004; accepted 3 November 2004.  相似文献   

6.
In most animals, the survival and reproductive success of males and females is linked to their size. The ability of individuals to control environmental influences on size will therefore have consequences for their fitness. In eusocial insects, individual males and reproductive females do not have to forage for themselves or control their local environment. Instead, they are reared by nonreproductive siblings (workers) inside colonies. Workers should benefit from controlling the size of sexuals because these sexuals are usually the only means for workers to transmit their genes to future generations. Nevertheless, considerable intraspecific variation exists around mean sexual size in social hymenopterans, even in species with monomorphic sexuals. This variation could result from genetic influences on sexual size, for instance sexuals may be selected to not agree to worker interests, or be due to strong, unpredictable environmental conditions constraining the efforts of workers to control sexual size. In a study that is the first of its kind I investigated genetic and environmental components of sexual body size variation in the ant Lasius niger, examining sexuals from wild colonies with one or several fathers (paternity levels established through microsatellite DNA offspring analysis). Evidence was found for a genetic component of size (broad-sense heritability of up to 42%) but strong common-colony effects (among-colony variation in food availability or in worker capacities to restrain sexual selfishness) also increased the size differences among colonies. Workers thus seem to only have partial-control over sexual size, but may be doing the best of a bad job.  相似文献   

7.
A statistical analysis of the population of the tropical mound building termite,Odontotermes redemanni, shows the existence of significant peaks in the populations of worker, soldier and nymphs in different phases during June to September. The population trends of the sexual nymphs and others show a close parallelism and this associationship is quite significant from a biological point of view. The population structure within the mounds is intimately associated with the multiplicative phase of the mounds and the peak in the overall population mostly occurs when sexual nymphs are produced in large numbers. These sexual nymphs develop into alates and fly out to establish new colonies. The ability of the de-alate sexuals in the mounds to produce the sexual nymphs and other castes in large numbers during the multiplicative phase of the mounds is probably genetically determined. Various statistical tests have been tried to interpret the biological factors associated with the population dynamics of this termite.  相似文献   

8.
Myrmecochory is an important ant–plant relationship, which presumably has benefits for the reproductive success of ant colonies through the nutritional value of elaiosomes. In a feeding experiment, we provided elaiosomes of Scilla bifolia and Corydalis cava to colonies of Myrmica rubra. Seeds were transported by ant workers to their nests and the elaiosomes were removed afterwards. After 3 months, elaiosome-supplemented colonies contained significantly more worker pupae than control colonies, whereas the number of new female sexuals was reduced. This result is discussed as a possible long-term benefit for M. rubra colonies through myrmecochory by colony growth.  相似文献   

9.
Summary Queen ants start new colonies either unassisted by workers (independent founding), assisted by workers from their natal nest (dependent founding), or assisted by the workers of other species (dependent, socially parasitic). The monogyne form of the fire ant,Solenopsis invicta, founds independently in summer, but in the fall it also produces a few sexuals some of which overwinter, then fly and mate in early spring. These overwintered queens lack the nutritional reserves and behaviors for independent colony founding. Rather, they seek out unrelated, mature, orphaned colonies, enter them and exploit the worker force to found their own colony through intraspecific social parasitism. Success in entering orphaned colonies is higher when these lack overwintered female alates of their own. When such alates are present, orphaning causes some to dealate and become uninseminated replacement queens, usually preventing entry of unrelated, inseminated replacement queens. Such colonies produce large, all-male broods. Successful entry of a parasitic queen robs the host colony of this last chance at reproductive success. Only overwintered sexuals take part in this mode of founding.  相似文献   

10.
Abstract.  1. Large colonies of ants are known to have a higher propensity for sexual offspring production, probably owing to their high capacity to exploit food resources.
2. The effects of food supplementation on the propensity for sexual offspring production, and whether it is linked with colony size, were investigated in an environment with poor resources (clear-cut areas).
3. Large colony size was associated with a higher propensity for sexual offspring production in food-supplemented colonies, whereas in non-supplemented control colonies an association with colony size was not found.
4. The results demonstrate that large colonies seem to have a higher capacity to exploit supplemented food. In addition, the production of sexual offspring was apparently limited by food availability in clear-cuts, especially for large colonies.  相似文献   

11.
Summary The most dangerous time for an ant colony is during the founding stage when the small colony is vulnerable to predation and competition. Colonies can grow more rapidly when multiple queens cooperate in raising the first worker brood (pleometrosis) or by raiding other incipient colonies for their brood. This brood raiding has been proposed to be the primary force selecting for pleometrosis, i.e. multiple-queen colonies may have a considerable advantage in destroying neighbours by aggressively stealing their brood. An alternative hypothesis is that incipient nests are part of a larger, interconnected population structure and that brood raiding reflects cooperative pleometrosis with subdivided colonies. A simple mathematical model supports the second hypothesis: workers of incipient colonies are especially favoured to peaceably abandon their nest and join with other colonies if the queens are related or queens from raided colonies can infiltrate the raiding colony. The latter condition is often met in ant species that brood raid and particularly exemplified in fire ants (Solenopsis invicta), where brood raiding involves little mortal combat and combines with pleometrosis to rapidly increase colony size. It is proposed that the term nest consolidation should replace brood raiding to more accurately reflect the relatively non-aggressive and potentially apparently cooperative nature of interactions between incipient ant colonies.  相似文献   

12.
Models of sex‐allocation conflict are central to evolutionary biology but have mostly assumed static decisions, where resource allocation strategies are constant over colony lifespan. Here, we develop a model to study how the evolution of dynamic resource allocation strategies is affected by the queen‐worker conflict in annual eusocial insects. We demonstrate that the time of dispersal of sexuals affects the sex‐allocation ratio through sexual selection on males. Furthermore, our model provides three predictions that depart from established results of classic static allocation models. First, we find that the queen wins the sex‐allocation conflict, while the workers determine the maximum colony size and colony productivity. Second, male‐biased sex allocation and protandry evolve if sexuals disperse directly after eclosion. Third, when workers are more related to new queens, then the proportional investment into queens is expected to be lower, which results from the interacting effect of sexual selection (selecting for protandry) and sex‐allocation conflict (selecting for earlier switch to producing sexuals). Overall, we find that colony ontogeny crucially affects the outcome of sex‐allocation conflict because of the evolution of distinct colony growth phases, which decouples how queens and workers affect allocation decisions and can result in asymmetric control.  相似文献   

13.
The recently discovered social parasite Acromyrmex insinuator ( 25 ) exploits colonies of the leafcutter ant A. echinatior. We document that A. insinuator represents a rare early stage in the evolution of social parasitism, because a worker caste is still partially present and mating phenology has remained at least partially similar to that of the host. A. insinuator is tolerant of host queens, and sexual offspring produced in parasitized colonies can be either exclusively A. insinuator or a mix of A. insinuator and A. echinatior. The remarkably high abundance of A. insinuator in nests of the investigated Panamanian host population and the fact that A. insinuator colonies readily reproduce under laboratory conditions allowed us to test evolutionary predictions on reproductive life history evolution that are not possible in most other socially parasitic ants. We show that (1) A. insinuator has a semelparous ‘big bang’ reproductive life history which exploits host colonies without leaving reserves for survival; (2) social parasite sexuals are significantly smaller than A. echinatior host sexuals, but still large compared to host workers, confirming an evolutionary scenario of gradual size reduction and loss of the worker caste after transition towards a socially parasitic life history; (3) major changes in the life history of ants can evolve relatively quickly compared to adaptations in morphology, caste differentiation and mating phenology.  相似文献   

14.
Sex allocation theory predicts parents should adjust their investment in male and female offspring in a way that increases parental fitness. This has been shown in several species and selective contexts. Yet, seasonal sex ratio variation within species and its underlying causes are poorly understood. Here, we study sex allocation variation in the wood ant Formica pratensis. This species displays conflict over colony sex ratio as workers and queens prefer different investment in male and female offspring, owing to haplodiploidy and relatedness asymmetries. It is unique among Formica ants because it produces two separate sexual offspring cohorts per season. We predict sex ratios to be closer to queen optimum in the early cohort but more female‐biased and closer to worker optimum in the later one. This is because the power of workers to manipulate colony sex ratio varies seasonally with the availability of diploid eggs. Consistently, more female‐biased sex ratios in the later offspring cohort over a three‐year sampling period from 93 colonies clearly support our prediction. The resulting seasonal alternation of sex ratios between queen and worker optima is a novel demonstration how understanding constraints of sex ratio adjustment increases our ability to predict sex ratio variation.  相似文献   

15.
Summary Colonies of eusocial insect species are most vulnerable during the founding stage. Many species have evolved means to minimize the length of the founding, or pre-emergence, stage by accelerating the rate of development of the first worker offspring. Other things being equal, the sooner a colony can begin producing workers, the less the risk of colony failure, the steeper the growth curve of the colony during the ergonomic stage, and the larger the colony will be at reproductive maturity. Swarm-founding species, whose founding units consist of hundreds or thousands of workers, may face less selection pressure to minimize the duration of the founding stage than independent-founding species. However, swarm size varies within species, and small swarms face greater risk of extinction during the founding stage than large swarms. This consideration predicts that within a species, small swarms should have shorter founding stages than large swarms, likely by rearing a small group of precocious brood. On the other hand, evidence that large social groups organize colony labor more efficiently, gather resources more predictably, and homeostatically maintain physical conditions inside the nest within narrower ranges, predicts that larger groups should rear all brood more rapidly and therefore have shorter founding stages. To test whether small or large swarms have shorter founding stages in colonies of Polybia occidentalis, a Neotropical swarm-founding wasp, we measured brood development rates in colonies collected after 28 days of development, just short of the minimum egg-to-adult development time. We found that as size increased across colonies, pre-emergence times decreased, mean age of pupae in the nest increased, and median age of the brood (larvae + pupae) increased. That is, brood developed significantly faster in large colonies than in small ones. Using these same measures, we also found that infection by a gregarine parasite increased brood development time, independently of colony size.Received 10 April 2003; revised 29 October 2003; accepted 21 November 2003.  相似文献   

16.
Summary Wingless (ergatoid) males of the tramp ant Cardiocondyla minutior attack and kill their young ergatoid rivals and thus attempt to monopolize mating with female sexuals reared in the colony. Because of the different strength of local mate competition in colonies with one or several reproductive queens, we expected the production of new ergatoid males to vary with queen number. Sex ratios were mostly female-biased, but in contrast to the sympatric species C. obscurior (Cremer and Heinze, 2002) neither the percentage of ergatoid males nor of female sexuals among the first 20 sexuals produced varied considerably with queen number. As in C. obscurior, experimental colony fragmentation led to the production of winged males, whereas in unfragmented control colonies only ergatoid males eclosed.Received 3 December 2003; revised 20 February 2004; accepted 23 February 2004.  相似文献   

17.
Summary A field population of Polistes metricus Say near St. Louis, Missouri was supplemented with dilute Apis mellifera honey and Trichoplusia ni caterpillars during the entire colony development period. Offspring were collected at two times to coincide with emergence of worker and reproductive broods. Food supplementation had no effect on nest size, the number of worker offspring, or the size of workers. Supplemented colonies did produce more females in August but female size was unaffected by supplementation. Supplementation had no effect on the number of males produced, but males were slightly larger on supplemented nests. We interpret these findings in the context of social insect life history theory.Received 30 June 2003; revised 9 December 2003; accepted 18 December 2003.  相似文献   

18.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

19.
Abstract. 1. Twenty-three nests of the submissive ant Formica fusca L. were sampled in two adjacent territories of the dominant wood ant Formica polyctena Först. The nests were dug up at different distances from the wood-ant mounds. Distance is assumed to be inversely related to the extent of disturbance of F. fusca by F. polyctena.
2. Colony success of F. fusca was assayed by counting the numbers of workers (colony size), and worker and sexual offspring in a nest. For individual size, the head width and dry weight of fifty workers per nest were measured.
3. Colony size correlated positively with the numbers of worker and sexual offspring in one territory, but only with worker offspring in the other.
4. Distance from the wood-ant mound correlated positively with colony size and numbers of worker and female offspring in one territory. In the other territory distance correlated positively with number of females, but negatively with number of worker offspring. No significant correlations between distance and the size measurements were obtained.
5. Because of its nonaggressive behaviour F. fusca may nest fairly close to a wood-ant mound but is likely to show reduced abundances in terms of nest density and forager number, and, ultimately, lowered fitness.  相似文献   

20.
Social insects are well-known for their ability to achieve robust collective behaviours even when individuals have limited information. It is often assumed that such behaviours rely on very large group sizes, but many insect colonies start out with only a few workers. Here we investigate the influence of colony size on collective decision-making in the house-hunting of the ant Temnothorax albipennis. In experiments where colony size was manipulated by splitting colonies, we show that worker number has an influence on the speed with which colonies discover new nest sites, but not on the time needed to make a decision (achieve a quorum threshold) or total emigration time. This occurred because split colonies adopted a lower quorum threshold, in fact they adopted the same threshold in proportion to their size as full-size colonies. This indicates that ants may be measuring relative quorum, i.e. population in the new nest relative to that of the old nest, rather than the absolute number. Experimentally reduced colonies also seemed to gain more from experience through repeated emigrations, as they could then reduce nest discovery times to those of larger colonies. In colonies of different sizes collected from the field, total emigration time was also not correlated with colony size. However, quorum threshold was not correlated with colony size, meaning that individuals in larger colonies adopted relatively lower quorum thresholds. Since this is a different result to that from size-manipulated colonies, it strongly suggests that the differences between natural small and large colonies were not caused by worker number alone. Individual ants may have adjusted their behaviour to their colony’s size, or other factors may correlate with colony size in the field. Our study thus shows the importance of experimentally manipulating colony size if the effect of worker number on the emergence of collective behaviour is to be studied. Received 13 December 2005; revised 9 May 2006; accepted 15 May 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号