首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
采用多种NMR分析技术,首次对百合甾体皂苷(25R,26R)-26-甲氧基螺甾烷-5-烯-3β-α-L-鼠李糖-(1→2)-[β-D-葡萄糖-(1→6)]-β-D-葡萄糖苷的1H和13C NMR信号进行了全归属,特别是应用选择性的1D TOCSY和1D NOESY核磁共振分析技术,对该化合物1中的氢谱信号严重重叠的糖链进行了详细的分析,提出了一套对甾体皂苷糖链信号进行全归属的核磁共振法.在确认其结构的基础上,建立了核磁共振法(1H NMR)测定该化合物1的纯度,给出了完整的实验条件,线性回归系数为0.9998,重复性实验RSD为0.58%,稳定性实验RSD为0.24%,操作简单、快速准确,且不需要其它对照品,是中药化学对照品纯度研究的一个有益补充.  相似文献   

2.
红凉伞根茎皂苷化学成分研究   总被引:2,自引:0,他引:2  
采用柱色谱等分离方法,经理化方法及1H,13C NMR等方法鉴定结构,从紫金牛科紫金牛属植物红凉伞(Ardisia crenata f.hortensis)根茎中分离鉴定出5个皂苷:朱砂根皂苷A (1)、朱砂根皂苷C (2)、百两金皂苷B (3)、3-O-[6′-O-palmitoyl-β-D-glucosyl-]-spinasta 7,22(23)-diene(4a)、3-O-[6′-O-palmitoyl-]-β-D-glucopyranosyl stigmasterol (4b),这五个化合物均首次从该植物中分离得到.  相似文献   

3.
在前期研究基础上,本实验考察了Gliocladium deliquescens NRRL 1086对偏诺皂苷元皂苷元C-3位的微生物糖基化能力。利用IR、HR-ESI-MS、NMR等方法,确定G.deliquescens NRRL 1086可以将偏诺皂苷元转化为偏诺皂苷元3-O-β-D-吡喃葡萄糖苷。同时研究表明G.deliquescens NRRL 1086不能在另外5种甾体皂苷元C-3位上引入糖基取代。实验结果进一步验证了G.deliquescens NRRL 1086对甾体皂苷元的选择性糖基化能力。  相似文献   

4.
探讨NKA-9树脂分离七叶皂苷的效果   总被引:2,自引:0,他引:2  
介绍了一种筛选七叶皂苷的树脂分离的简便程序 ,即 :先用静态批量吸附法比较 ,后用动态柱层析法确认。按此程序对所试的 5种树脂 D4 0 2 0 ,D10 1,NKA- 9,H10 3,2 0 1× 4和 1种硅胶 G分离七叶皂苷的效果进行了检测 ,数据表明 ,树脂 NKA- 9对七叶皂苷的吸附和解吸附性能均较好 ,专一性也较强 ,在实践中有一定的开发和应用价值。文中还对相关问题进行了讨论  相似文献   

5.
滇皂角中一个新三萜皂苷GS-C′   总被引:1,自引:0,他引:1  
从滇皂角Gleditsia delavayi Franch荚果的水溶性部分分离到一个含有8个糖基的三萜皂苷。运用光谱方法鉴定其结构为:3-O-β-D-吡喃木糖基(1→2)-α-L-阿拉伯吡喃糖基(1→6)-β-D-葡萄吡喃糖基-28-O-β-D-吡喃木糖基(1→3)-β-D-吡喃木糖基(1→4)-α-L-鼠李吡喃糖基(1→2)-[α-L-鼠李吡喃糖基(1→6)]-β-D-葡萄吡喃糖基刺囊酸(GS-C′)。应用2D NMR谱,包括TOCSY,^1h-^1H COSY,HMQC,HMQC-TOCSY,HMBC和ROESY谱,全归属了其氢和碳的化学位移。  相似文献   

6.
人参皂苷生物合成和次生代谢工程   总被引:9,自引:0,他引:9  
人参皂苷属于植物三萜皂苷类化合物,是传统名贵药材人参和西洋参的主要活性成分,具有抗炎、抗氧化作用,还有广泛的抗肿瘤作用。人参皂苷与植物甾醇共享前期代谢途径,通过2, 3-氧化鲨烯环化步骤进入三萜代谢分支途径,在三萜碳环骨架复杂修饰的基础上形成人参皂苷。综述了近年人参皂苷生物合成途径及关键酶基因研究的最新进展,揭示了人参皂苷生物合成的基本途径,对途径中关键酶的基因进行了综述,并结合次生代谢工程技术, 探讨了该技术在人参皂苷生物合成中的应用前景。  相似文献   

7.
西洋参总皂苷经β-糖苷酶催化水解,采用HPLC检测分析确定西洋参总皂苷中的主要原人参二醇型皂苷Rb1、Rd、Rc和Rb2已经完全被水解。水解产物通过反复硅胶柱层析和反向硅胶柱层析分离纯化得到7个皂苷,通过NMR谱图分析分别鉴定为人参皂苷compound K(1)、人参皂苷Mc(2)、人参皂苷Rg1(3)、人参皂苷Rg2(4)、人参皂苷Re(5)、人参皂苷F1(6)和拟人参皂苷F11(7)。β-糖苷酶催化西洋参总皂苷水解实验表明,西洋参中原人参二醇型皂苷的水解产物是人参皂苷compound K和人参皂苷Mc。  相似文献   

8.
利用柱色谱从异柱五加 (Acanthopanax sieboldianus forma albeofolium Yook) 叶的甲醇提取液中分离出四个齐墩果烷型皂苷类化合物.通过波谱方法(1H NMR、13C NMR、2D NMR和FAB-MS)鉴定它们分别为kalopanax-saponin B (1)、acanthopanax saponin CP3(2)、kalopanax-saponin A (3) 和sieboldianoside A (4).  相似文献   

9.
为了解绵萆薢(Dioscorea spongiosa)的化学成分,从其70%乙醇水溶液提取物中分离鉴定了8个化合物,经理化性质和波谱数据分析分别鉴定为:20(S)-人参皂苷Rh1(1)、人参皂苷Rg1(2)、人参皂苷Re(3)、三七皂苷R1(4)、人参皂苷Rd(5)、人参皂苷Rb1(6)、常青藤皂苷元3-O-α-L-吡喃阿拉伯糖苷(7)和木通皂苷D(8)。化合物1、2、3、5和6为首次从该种植物中分离得到,化合物7和8为首次从薯蓣属植物中分离得到。  相似文献   

10.
麦冬皂苷D对过氧化氢造模的HUVEC保护作用机制研究   总被引:7,自引:0,他引:7  
目的:研究麦冬皂苷D对HUVEC凋亡相关分子的影响,探讨其作用机制。方法:用H2O2构建凋亡模型,运用MTT及流式细胞仪检测细胞活性,激光共聚焦方法测定粒体膜电位和钙离子浓度。结果:麦冬皂苷D可以稳定线粒体膜电位,减少钙离子内流,增加细胞的活力。结论:麦冬皂苷D对HUVEC有一定的保护作用。  相似文献   

11.
Abstract

Some improvements were made on synthetic method for 2′-fluoro-2′-deoxyadenosine (11). Thus 11 was obtained in an overall yield of 9.3% starting from adenosine. 2′-Fluoro-2′-deoxyadenosine 3′,5′-cyclic phosphate (13), an analogue of cAMP, was synthesized from 11. The carbon-13 NMR spectrum was measured. The sugar carbon signals can be unambiguously assigned since the C1′ C2′ and C3′ have different 13C-19F coupling constants. Comparison of the data with those of other 3′,5′-cyclic phosphate derivatives confirms the assignments of C3′ and C4′ signals previously proposed by us.  相似文献   

12.
We have recorded site-directed solid-state 13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin (bR) as a typical membrane protein in lipid bilayers, to examine the effect of formation of two-dimensional (2D) lattice or array of the proteins toward backbone dynamics, to search the optimum condition to be able to record full 13C NMR signals from whole area of proteins. Well-resolved 13C NMR signals were recorded for monomeric [3-13C]Ala-bR in egg phosphatidylcholine (PC) bilayer at ambient temperature, although several 13C NMR signals from the loops and transmembrane alpha-helices were still suppressed. This is because monomeric bR reconstituted into egg PC, dimyristoylphosphatidylcholine (DMPC) or dipalmytoylphosphatidylcholine (DPPC) bilayers undergoes conformational fluctuations with frequency in the order of 10(4)-10(5) Hz at ambient temperature, which is interfered with frequency of magic angle spinning or proton decoupling. It turned out, however, that the 13C NMR signals of purple membrane (PM) were almost fully recovered in gel phase lipids of DMPC or DPPC bilayers at around 0 degrees C. This finding is interpreted in terms of aggregation of bR in DMPC or DPPC bilayers to 2D hexagonal array in the presence of endogenous lipids at low temperature, resulting in favorable backbone dynamics for 13C NMR observation. It is therefore concluded that [3-13C]Ala-bR reconstituted in egg PC, DMPC or DPPC bilayers at ambient temperature, or [3-13C]Ala- and [1-13C]Val-bR at low temperature gave rise to well-resolved 13C NMR signals, although they are not always completely the same as those of 2D hexagonal lattice from PM.  相似文献   

13.
M Kainosho  H Nagao  T Tsuji 《Biochemistry》1987,26(4):1068-1075
The carbonyl carbon NMR signals of the Phe residues in Streptomyces subtilisin inhibitor (SSI) were selectively observed for [F]SSI, in which all phenylalanines were uniformly labeled with [1-13C]Phe. The three enhanced resonances in the spectrum of [F]SSI were unambiguously assigned to the specific sites in the amino acid sequence by means of 15N,13C double-labeling techniques. Namely, the resonances at 174.9 and 172.6 ppm (in D2O, pH 7.3, 50 degrees C) showed the satellite peaks due to 13C-15N spin coupling in the spectra of [F,GS]SSI and [F,A]SSI, in which Ser/Gly and Ala residues were labeled with [15N]Gly/Ser and [15N]Ala, respectively, together with [1-13C]Phe. The carbonyl groups of Phe-97 and Phe-111 are involved in peptide bonds with the amino nitrogens of Ser-98 and Ala-112, respectively. These results clearly indicate that the signals at 174.5 and 172.6 ppm are due to Phe-97 and Phe-111, respectively. The signal at the lowest field (177.1 ppm) was thus assigned to the carboxyl carbon of the C-terminal Phe-113. The lifetimes of the amide hydrogens of the three Phe residues and their C-terminal-side neighbors (Ser-98 and Ala-112) were investigated by using the effect of deuterium-hydrogen exchange of amide on the line shapes (DEALS) for the Phe carbonyl carbon resonances. In this method, the NMR spectra of [F]SSI dissolved in 50% D2O (pH 7.3) were measured at various temperatures, and the line shape changes caused by deuteriation isotope shifts were analyzed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Protection of 3- and 17 beta-hydroxyl groups of estrone and estradiol as tetrahydropyranyl ether derivatives led to mixtures of 2'(R)- and 2'(S)-diastereoisomers which were separated by crystallization (3-tetrahydropyranyl ethers), or by thin-layer chromatography (17-tetrahydropyranyl ethers), and characterized by 1H and 13C nuclear magnetic resonance (NMR). Assignments for NMR signals of estradiol 3,17 beta-ditetrahydropyranyl ether were facilitated by comparison with those of its 15 zeta, 16 zeta-dideuterio analog and by 2D 1H-13C heteroshift correlation experiments. Diastereoisomers of 3-tetrahydropyranyl ether derivatives could be identified through the 13C NMR doublet signals of the anomeric C-2' and the aromatic C-4 carbon atoms in CDCl3. Diastereoisomers of 17-tetrahydropyranyl ether derivatives were recognized from characteristic modifications of 1H NMR signals of H-2', H-6', H-1, H-17, and 18-CH3 protons as well as from the 13C NMR doublet signals corresponding to C-2', C-4', C-6', C-12, C-13, C-16, and C-17 carbon atoms. Low-temperature experiments showed a splitting of the C-2', C-6', and C-17 13C NMR signals of each of the two 17-tetrahydropyranyl ether isomers. The downfield signal (equatorial conformer) of the three resulting doublets was more intense for the 17-tetrahydropyranyl ether 2'(S)-isomer, whereas the upfield signal (axial conformer) was more intense for the 2'(R)-isomer.  相似文献   

15.
13C Nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala-labeled bacteriorhodopsin (bR) were edited to give rise to regio-selective signals from hydrophobic transmembrane alpha-helices by using NMR relaxation reagent, Mn(2+) ion. As a result of selective suppression of (13)C NMR signals from the surfaces in the presence of Mn(2+) ions, several (13)C NMR signals of Ala residues in the transmembrane alpha-helices were identified on the basis of site-directed mutagenesis without overlaps from (13)C NMR signals of residues located near the bilayer surfaces. The upper bound of the interatomic distances between (13)C nucleus in bR and Mn(2+) ions bound to the hydrophilic surface to cause suppressed peaks by the presence of Mn(2+) ion was estimated as 8.7 A to result in the signal broadening to 100 Hz and consistent with the data based on experimental finding. The Ala C(beta) (13)C NMR peaks corresponding to Ala-51, Ala-53, Ala-81, Ala-84, and Ala-215 located around the extracellular half of the proton channel and Ala-184 located at the kink in the helix F were successfully identified on the basis of (13)C NMR spectra of bR in the presence of Mn(2+) ion and site-directed replacement of Ala by Gly or Val. Utilizing these peaks as probes to observe local structure in the transmembrane alpha-helices, dynamic conformation of the extracellular half of bR at ambient temperature was examined, and the local structures of Ala-215 and 184 were compared with those elucidated at low temperature. Conformational changes in the transmembrane alpha-helices induced in D85N and E204Q and its long-range transmission from the proton release site to the site around the Schiff base in E204Q were also examined.  相似文献   

16.
13C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane alphaII-helices. Surprisingly, the 13C NMR spectra of [3-(13)C]Ala-D85N turned out to be very similar to those of [3-(13)C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane alphaII-helices of the M-like state are suppressed already by fluctuation motions in the order of 10(4)-10(5) Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic alpha-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane alpha-helices followed by Pro residues in [1-(13)C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-(13)C]Val and [3-(13)C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.  相似文献   

17.
We have recorded site-directed solid-state 13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin (bR) as a typical membrane protein in lipid bilayers, to examine the effect of formation of two-dimensional (2D) lattice or array of the proteins toward backbone dynamics, to search the optimum condition to be able to record full 13C NMR signals from whole area of proteins. Well-resolved 13C NMR signals were recorded for monomeric [3-13C]Ala-bR in egg phosphatidylcholine (PC) bilayer at ambient temperature, although several 13C NMR signals from the loops and transmembrane α-helices were still suppressed. This is because monomeric bR reconstituted into egg PC, dimyristoylphosphatidylcholine (DMPC) or dipalmytoylphosphatidylcholine (DPPC) bilayers undergoes conformational fluctuations with frequency in the order of 104-105 Hz at ambient temperature, which is interfered with frequency of magic angle spinning or proton decoupling. It turned out, however, that the 13C NMR signals of purple membrane (PM) were almost fully recovered in gel phase lipids of DMPC or DPPC bilayers at around 0 °C. This finding is interpreted in terms of aggregation of bR in DMPC or DPPC bilayers to 2D hexagonal array in the presence of endogenous lipids at low temperature, resulting in favorable backbone dynamics for 13C NMR observation. It is therefore concluded that [3-13C]Ala-bR reconstituted in egg PC, DMPC or DPPC bilayers at ambient temperature, or [3-13C]Ala- and [1-13C]Val-bR at low temperature gave rise to well-resolved 13C NMR signals, although they are not always completely the same as those of 2D hexagonal lattice from PM.  相似文献   

18.
本论文利用柱色谱法从中药蟾酥中分离得到一个蟾蜍甾烯化合物,利用二维核磁共振和其它化学及光谱学手段对其结构进行了鉴定,并首次给出了其完整的核磁信号归属.  相似文献   

19.
Five new oleanane saponins named arganine A, B, D, E and F and two known saponins: arganine C and mi-saponin A were isolated from the kernel of Argania spinosa. The structures of these saponins were elucidated by using 1H NMR, 1H-1H COSY NMR, 13C NMR, FAB mass spectrometry and chemical evidence.  相似文献   

20.
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号