首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
In the vertebrate central nervous system (CNS), mutual antagonism between posteriorly expressed Gbx2 and anteriorly expressed Otx2 positions the midbrain/hindbrain boundary (MHB), but does not induce MHB organizer genes such as En, Pax2/5/8 and Wnt1. In the CNS of the cephalochordate amphioxus, Otx is also expressed anteriorly, but En, Pax2/5/8 and Wnt1 are not expressed near the caudal limit of Otx, raising questions about the existence of an MHB organizer in amphioxus. To investigate the evolutionary origins of the MHB, we cloned the single amphioxus Gbx gene. Fluorescence in situ hybridization showed that, as in vertebrates, amphioxus Gbx and the Hox cluster are on the same chromosome. From analysis of linked genes, we argue that during evolution a single ancestral Gbx gene duplicated fourfold in vertebrates, with subsequent loss of two duplicates. Amphioxus Gbx is expressed in all germ layers in the posterior 75% of the embryo, and in the CNS, the Gbx and Otx domains abut at the boundary between the cerebral vesicle (forebrain/midbrain) and the hindbrain. Thus, the genetic machinery to position the MHB was present in the protochordate ancestors of the vertebrates, but is insufficient for induction of organizer genes. Comparison with hemichordates suggests that anterior Otx and posterior Gbx domains were probably overlapping in the ancestral deuterostome and came to abut at the MHB early in the chordate lineage before MHB organizer properties evolved.  相似文献   

2.
Recent comparative studies on expression patterns of homeobox genes in the development between ascidians and vertebrates have come to suggest a possibility that a common basic mechanism may exist in the patterning of the central nervous system (CNS). The ems/emx genes have been demonstrated to be involved in the formation and patterning of the anterior CNS in Drosophila and vertebrate embryos. In the present study, we have isolated and analyzed expression of Hremx, the ascidian homologue of ems/emx with particular attention to whether it is expressed in the larval ascidian CNS. Expression of Hremx was detected in the anterior trunk and lateral tail epidermis but not in the anterior CNS. The two expression domains of the epidermis responded in different ways upon treatment with retinoic acid: the anterior expression domain was unaltered, while the posterior expression domain extended to the anterior. The present result suggests that Hremx may have a function in anterior patterning but not in the patterning of the CNS in the ascidian embryo. We suggest the possibility that the function of ems/emx genes in the patterning of the anterior CNS in Drosophila and vertebrate embryos might have been acquired independently in the lineages to Drosophila and vertebrates.  相似文献   

3.
In vertebrate development, the HOX genes act to specify cell identity along much of the anterior-posterior axis of the embryonic central nervous system. In all vertebrates examined to date, the vitamin A metabolite retinoic acid is implicated in the patterning of the anterior posterior axis and the induction of HOX gene expression. Two recent papers have extended the study of retinoic acid induction of HOX genes to the closest relatives of the vertebrates, amphioxus and tunicates(1,2). In both these species, exogenous retinoic acid is able to induce ectopic expression of HOX 1 genes in the anterior central nervous system. This suggests that retinoic acid control of anterior-posterior axis formation and HOX induction is not specific to vertebrates. However, in the more distantly related echinoderms and arthropods, retinoic acid does not seem to act in the same way. Thus the role of retinoic acid in anterior-posterior axis specification may be a chordate innovation, perhaps linked to the evolution of another chordate character, the dorsal neural tube.  相似文献   

4.
Ascidians are invertebrate chordates with a larval body plan similar to that of vertebrates. The ascidian larval CNS is divided along the anteroposterior axis into sensory vesicle, neck, visceral ganglion and tail nerve cord. The anterior part of the sensory vesicle comes from the a-line animal blastomeres, whereas the remaining CNS is largely derived from the A-line vegetal blastomeres. We have analysed the role of the Ras/MEK/ERK signalling pathway in the formation of the larval CNS in the ascidian, Ciona intestinalis. We show evidence that this pathway is required, during the cleavage stages, for the acquisition of: (1) neural fates in otherwise epidermal cells (in a-line cells); and (2) the posterior identity of tail nerve cord precursors that otherwise adopt a more anterior neural character (in A-line cells). Altogether, the MEK signalling pathway appears to play evolutionary conserved roles in these processes in ascidians and vertebrates, suggesting that this may represent an ancestral chordate strategy.  相似文献   

5.
 The ventral nerve cord of arthropods is characterised by the organisation of major axon tracts in a ladder-like pattern. The individual neuromeres are connected by longitudinal connectives whereas the contra-lateral connections are brought about through segmental commissures. In each neuromere of the embryonic central nervous system (CNS) of Drosophila an anterior and a posterior commissure is found. The development of these commissures requires a set of neurone-glia interactions at the midline. Here we show that both the anterior as well as the posterior commissures are subdivided into three axon-containing regions. Electron microscopy of the ventral nerve cord of mutations affecting CNS midline cells indicates that the midline glial cells are required for this subdivision. In addition the midline glial cells appear required for a crossing of commissural growth cones perpendicular to the longitudinal tracts, since in mutants with defective midline glial cells commissural axons frequently cross the midline at aberrant angles. Received: 6 July 1997 / Accepted: 27 August 1997  相似文献   

6.
In this review, we describe general features of the expression of cadherins in the developing central nervous system (CNS) of vertebrates. In the early neuroepithelium, the expression of several cadherins is restricted to specific regions corresponding to segmental domains. Segmental boundaries often coincide with changes in cadherin expression, subdividing the primordial CNS into different adhesive domains. In the different neuromeric domains, early neurons are generated which differentially express cadherins. In the mantle layer, these early neurons seem to sort out according to which cadherin they express, and they aggregate into various gray matter regions (brain nuclei and cortical lamina and regions). The gray matter structures expressing a given cadherin become connected to one another to form parts of particular functional systems or neuronal circuits. Together, these findings show that cadherins provide a molecular system reflecting both early embryonic and mature nervous system architecture. The possible roles of cadherins in the formation and maintenance of segmental and functional nervous system structures are discussed.  相似文献   

7.
Arthropods, vertebrates, and annelids all have a segmented body. Our recent discovery of involvement of Notch-signalling in spider segmentation revived the discussion on the origin of segmented body plans and suggests the sharing of a common genetic program in a common ancestor. Here, we analysed the spider homologues of the Suppressor of Hairless and Presenilin genes, which encode components of the canonical Notch-pathway, to further explore the role of Notch-signalling in spider segmentation. RNAi silencing of two spider Suppressor of Hairless homologues and the spider Presenilin homologue causes severe segmentation phenotypes. The most prominent defect is the consistent breakdown of segmentation after the formation of three (Suppressor of Hairless) or five (Presenilin) opisthosomal segments. These phenotypes indicate that Notch-signalling during spider segmentation likely involves the canonical pathway via Presenilin and Suppressor of Hairless. Furthermore, it implies that Notch-signalling influences both the formation and patterning of the spider segments: it is required for the specification of the posterior segments and for proper specification of the segment boundaries. We argue that alternative, partly redundant, pathways might act in the formation of the anterior segments that are not active in the posterior segments. This suggests that at least some differences exist in the specification of anterior and posterior segments of the spider, a finding that may be valid for most short germ arthropods. Our data provide additional evidence for the similarities of Notch-signalling in spider segmentation and vertebrate somitogenesis and strengthen our previous notion that the formation of the segments in arthropods and vertebrates might have shared a genetic program in a common ancestor.  相似文献   

8.
9.
In Drosophila embryos, segment boundaries form at the posterior edge of each stripe of engrailed expression. We have used an HRP-CD2 transgene to follow by transmission electron microscopy the cell shape changes that accompany boundary formation. The first change is a loosening of cell contact at the apical side of cells on either side of the incipient boundary. Then, the engrailed-expressing cells flanking the boundary undergo apical constriction, move inwards and adopt a bottle morphology. Eventually, grooves regress, first on the ventral side, then laterally. We noted that groove formation and regression are contemporaneous with germ band retraction and shortening, respectively, suggesting that these rearrangements could also contribute to groove morphology. The cellular changes accompanying groove formation require that Hedgehog signalling be activated, and, as a result, a target of Ci expressed, at the posterior of each boundary (obvious targets like stripe and rhomboid appear not to be involved). In addition, Engrailed must be expressed at the anterior side of each boundary, even if Hedgehog signalling is artificially maintained. Thus, there are distinct genetic requirements on either side of the boundary. In addition, Wingless signalling at the anterior of the domains of engrailed (and hedgehog) expression represses groove formation and thus ensures that segment boundaries form only at the posterior.  相似文献   

10.
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior–posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.  相似文献   

11.
Phylogenetic, morphological, and developmental data concerning the Arthropoda are reviewed and discussed with the aim of reconstructing the ancestral body plan of the mandibulate arthropods (Myriapoda, Hexapoda, Crustacea). Comparative morphology as well as embryology of malacostracans and hexapods (cell-lineages, patterns of mitotic domains, patterns of en-stripe formation, expression zones of pair-rule, homeotic, and gap-like genes) suggest that (a) the basic boundary subdividing the mandibulate body into the primary embryonic regions, anterior protocephalon and posterior protocorm, runs anteriorly to parasegment PS1 (=within the mandibular segment); (b) protocephalon (pregnathal region) probably is not a unitary body region; (c) maxillary segments are closely related to the postgnathal trunk segments; (d) the “typical” mandibulate head (pregnathal-mandibular-maxillary) is not developed in all Mandibulata and has evolved several times in parallel; and (e) postcephalic tagmosis is much less conserved, and probably more recent, than tagmosis of more anterior areas. The arachnomorphan anterior tagma, the prosoma, is compared with the hypothesized ancestral mandibulate head.  相似文献   

12.
Heart development exhibits some striking similarities between vertebrates and arthropods, for example in both cases the heart develops as a linear tube from mesodermal cells. Furthermore, the underlying molecular pathways exhibit a significant number of similarities between vertebrates and the fruit fly Drosophila, suggesting a common origin of heart development in the last common ancestor of flies and vertebrates. However, there is hardly any molecular data from other animals. Here we show that many of the key genes are also active in heart development in the spider Cupiennius salei. Spiders belong to the chelicerates and are distantly related to insects with respect to the other arthropods. The tinman/Nkx2.5 ortholog is the first gene to be specifically expressed in the presumptive spider heart, like in flies and vertebrates. We also show that tinman is expressed in a similar way in the beetle Tribolium castaneum. Taken together this demonstrates that tinman has a conserved role in the specification of the arthropod heart. In addition, we analyzed the expression of other heart genes (decapentaplegic, Wnt5, H15, even-skipped, and Mef2 ) in Cupiennius. The expression of these genes suggests that the genetic pathway of heart development may be largely conserved among arthropods. However, a major difference is seen in the earlier expression of the even-skipped gene in the developing spider heart compared with Drosophila, implying that the role of even-skipped in heart formation might have changed during arthropod evolution. The most striking finding, however, is that in addition to the dorsal tissue of the fourth walking leg segment and the opisthosomal segments, we discovered tinman-expressing cells that arise from a position dorsal to the cephalic lobe and that contribute to the anterior dorsal vessel. In contrast to the posterior heart tissue, these cells do not express the other heart genes. The spider heart thus is composed of two distinct populations of cells.  相似文献   

13.
The midbrain-hindbrain interface gives rise to a boundary of particular importance in CNS development as it forms a local signalling centre, the proper functioning of which is essential for the formation of tectum and cerebellum. Positioning of the mid-hindbrain boundary (MHB) within the neuroepithelium is dependent on the interface of Otx2 and Gbx2 expression domains, yet in the absence of either or both of these genes, organiser genes are still expressed, suggesting that other, as yet unknown mechanisms are also involved in MHB establishment. Here, we present evidence for a role for Notch signalling in stabilising cell lineage restriction and regulating organiser gene expression at the MHB. Experimental interference with Notch signalling in the chick embryo disrupts MHB formation, including downregulation of the organiser signal Fgf8. Ectopic activation of Notch signalling in cells of the anterior hindbrain results in an exclusion of those cells from rhombomeres 1 and 2, and in a simultaneous clustering along the anterior and posterior boundaries of this area, suggesting that Notch signalling influences cell sorting. These cells ectopically express the boundary marker Fgf3. In agreement with a role for Notch signalling in cell sorting, anterior hindbrain cells with activated Notch signalling segregate from normal cells in an aggregation assay. Finally, misexpression of the Notch modulator Lfng or the Notch ligand Ser1 across the MHB leads to a shift in boundary position and loss of restriction of Fgf8 to the MHB. We propose that differential Notch signalling stabilises the MHB through regulating cell sorting and specifying boundary cell fate.  相似文献   

14.
15.
16.
17.
《The Journal of cell biology》1990,111(5):1839-1847
On terminally differentiated sperm cells, surface proteins are segregated into distinct surface domains that include the anterior and posterior head domains. We have analyzed the formation of the anterior and posterior head domains of guinea pig sperm in terms of both the timing of protein localization and the mechanism(s) responsible. On testicular sperm, the surface proteins PH-20, PH-30 and AH-50 were found to be present on the whole cell (PH-20) or whole head surface (PH- 30, AH-50). On sperm that have completed differentiation (cauda epididymal sperm), PH-20 and PH-30 proteins were restricted to the posterior head domain and AH-50 was restricted to the anterior head domain. Thus these proteins become restricted in their distribution late in sperm differentiation, after sperm leave the testis. We discovered that the differentiation process that localizes these proteins can be mimicked in vitro by treating testicular sperm with trypsin. After testicular sperm were treated with 20 micrograms/ml trypsin for 5 min at room temperature, PH-20, PH-30, and AH-50 were found localized to the same domains to which they are restricted during in vivo differentiation. The in vitro trypsin-induced localization of PH-20 to the posterior head mimicked the in vivo differentiation process quantitatively as well as qualitatively. The quantitative analysis showed the process of PH-20 localization involves the migration of surface PH-20 from other regions to the posterior head domain. Immunoprecipitation experiments confirmed that there is protease action in vivo on the sperm surface during the late stages of sperm differentiation. Both the PH-20 and PH-30 proteins were shown to be proteolytically cleaved late in sperm differentiation. These findings strongly implicate proteolysis of surface molecules as an initial step in the mechanism of formation of sperm head surface domains.  相似文献   

18.
The emerging diversity of Rickettsia   总被引:1,自引:0,他引:1  
The best-known members of the bacterial genus Rickettsia are associates of blood-feeding arthropods that are pathogenic when transmitted to vertebrates. These species include the agents of acute human disease such as typhus and Rocky Mountain spotted fever. However, many other Rickettsia have been uncovered in recent surveys of bacteria associated with arthropods and other invertebrates; the hosts of these bacteria have no relationship with vertebrates. It is therefore perhaps more appropriate to consider Rickettsia as symbionts that are transmitted vertically in invertebrates, and secondarily as pathogens of vertebrates. In this review, we highlight the emerging diversity of Rickettsia species that are not associated with vertebrate pathogenicity. Phylogenetic analysis suggests multiple transitions between symbionts that are transmitted strictly vertically and those that exhibit mixed (horizontal and vertical) transmission. Rickettsia may thus be an excellent model system in which to study the evolution of transmission pathways. We also focus on the emergence of Rickettsia as a diverse reproductive manipulator of arthropods, similar to the closely related Wolbachia, including strains associated with male-killing, parthenogenesis, and effects on fertility. We emphasize some outstanding questions and potential research directions, and suggest ways in which the study of non-pathogenic Rickettsia can advance our understanding of their disease-causing relatives.  相似文献   

19.
We have used hypomorphic and null tailless (tll) alleles to carry out a detailed analysis of the effects of the lack of tll gene activity on anterior and posterior regions of the embryo. The arrangement of tll alleles into a continuous series clarifies the relationship between the anterior and posterior functions of the tll gene and indicates that there is a graded sensitivity of anterior and posterior structures to a decrease in tll gene activity. With the deletion of both anterior and posterior pattern domains in tll null embryos, there is a poleward expansion of the remaining pattern. Using anti-horseradish peroxidase staining, we show that the formation of the embryonic brain requires tll. A phenotypic and genetic study of other pattern mutants places the tll gene within the hierarchy of maternal and zygotic genes required for the formation of the normal body pattern. Analysis of mutants doubly deficient in tll and maternal terminal genes is consistent with the idea that these genes act together in a common pathway to establish the domains at opposite ends of the embryo. We propose that tll establishes anterior and posterior subdomains (acron and tail regions, respectively) within the larger pattern regions affected by the maternal terminal genes.  相似文献   

20.
The development of the dorsal ganglion of the salp, Thalia democratica, is described from electron microscope reconstructions up to the stage of central neuropile formation. The central nervous system (CNS) rudiment is initially tubular with an open central canal. Early developmental events include: (i) the formation of a thick dorsal mantle of neuroblasts from which paired dorsal paraxial neuropiles arise; (ii) the differentiation of clusters of primary motor neurons along the ventral margin of the mantle; and (iii) the development from the latter of a series of peripheral nerves. The dorsal paraxial neuropiles ultimately connect to the large central neuropile, which develops later. Direct contact between neuroblasts and muscle appears to be involved in the development of some anterior nerves. The caudal nerves responsible for innervating more distant targets in the posterior part of the body develop without such contacts, which suggests that a different patterning mechanism may be employed in this part of the neuromuscular system. The results are compared with patterns of brain organization in other chordates. Because the salp CNS is symmetrical and generally less reduced than that of ascidian larvae, it is more easily compared with the CNS of amphioxus and vertebrates. The dorsal paraxial centres in the salp resemble the dorsolateral tectal centres in amphioxus in both position and organization; the central neuropile in salps likewise resembles the translumenal system in amphioxus. The neurons themselves are similar in that many of their neurites appear to be derived from the apical surface instead of the basal surface of the cell. Such neurons, with extensively developed apical neurites, may represent a new cell type that evolved in the earliest chordates in conjunction with the formation of translumenal or intralumenal integrative centres. In comparing the salp ganglion with vertebrates, we suggest that the main core of the ganglion is most like the mes-metencephalic region of the vertebrate brain, i.e. the zone occupied by the midbrain, isthmus, and anterior hindbrain. Counterparts of more anterior regions (forebrain) and posterior ones (segmented hindbrain) appear to be absent in salps, but are found in other tunicates, suggesting that evolution has acted quite differently on the main subdivisions of the CNS in different types of tunicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号