首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
R R Lobb  E M Alderman  J W Fett 《Biochemistry》1985,24(19):4969-4973
The angiogenic capacity of the class 1 heparin-binding growth factor from bovine brain, an anionic endothelial cell mitogen of Mr 16 000, has been evaluated. Its ability to induce the growth of new blood vessels has been assessed by means of two established assay systems. On the embryonic chick chorioallantoic membrane dose-response studies demonstrate that 160 ng (10 pmol) of mitogen is required to induce angiogenesis in greater than 50% of the eggs within 72 h. In the presence of 1 unit of exogenous heparin only 40 ng of mitogen (2.5 pmol) is needed to induce a similar response. Moreover, this occurs within 48 h, indicating that heparin also augments the angiogenic response by enhancing the rate of induction of angiogenesis. Eighty nanograms (5 pmol) of mitogen also induces the ingrowth of new blood vessels into the rabbit cornea, both in the presence and in the absence of heparin. These results establish that the class 1 heparin-binding growth factor from bovine brain is an angiogenesis factor. Importantly, the neovascularization induced by this angiogenesis factor is enhanced by heparin. The mechanistic implications for neovascularization under certain normal and pathological conditions are discussed.  相似文献   

2.
Heparin has a potent angiogenic effect in experimental animals and patients with ischemic diseases; however, the precise mechanism behind this angiogenesis remains to be clarified. The aim of this study was to determine whether the administration of heparin affects the levels of heparin-binding angiogenic factors in human plasma, and to identify the molecule responsible for heparin-induced angiogenesis. Plasma levels of hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were measured before and after administration of 100 U, 3,000 U or 10,000 U of heparin in patients with coronary artery disease. Administration of 3,000 U or 10,000 U of heparin caused significant increases in plasma HGF (40- and 54-fold, respectively), in absence of obvious increases in bFGF and VEGF levels. Furthermore, compared with the serum collected before heparin administration, the serum collected after heparin administration had more prominent growth-promoting and vascular tube-inducing properties on endothelial cells, and these increased activities were completely inhibited by neutralization of HGF, whereas neutralization of bFGF and VEGF had no effect. These findings suggest that HGF plays a significant role in heparin-induced angiogenesis.  相似文献   

3.
4.
Inhibition of human endothelial cell proliferation by heparin and steroids   总被引:1,自引:0,他引:1  
Previous works have reported the controversial effects of heparin and steroids on angiogenesis. In this study, we investigated the effect of these compounds on human endothelial cell (EC) growth in vitro. An antiproliferative heparin activity was found in low human serum concentrations (2%). When EC were exposed to heparin (10(-6) M), their proliferation index was reduced in the presence of endothelial cell growth factor added 6 hours or more later. These results suggest that there is an intracellular effect of heparin which reduces 3H-methylthymidine uptake. Hydrocortisone acetate and tetrahydroS induced inhibition of EC growth in a dose-dependent manner. Steroids inhibited proliferation of EC in culture medium in the presence or the absence of growth factor and in different human serum concentrations. These results suggest a possible synergistic antiangiogenic action of heparin plus steroids.  相似文献   

5.
Heparin affin regulatory peptide (HARP) is a growth factor displaying high affinity for heparin. It is present in the extracellular matrix of many tissues, interacting with heparan sulfate and dermatan/chondroitin sulfate glycosaminoglycans. We have previously shown that HARP is implicated in the control of angiogenesis and its effects are mimicked, at least in part, by synthetic peptides that correspond to its N and C termini. In the present work, we show that HARP is cleaved by plasmin, leading to the production of five peptides that correspond to distinct domains of the molecule. Heparin, heparan sulfate and dermatan sulfate, at various HARP to glycosaminoglycan ratios, partially protect HARP from plasmin degradation. The molecules with higher affinity to HARP are the more protective, heparin being the most efficient. The peptides that are produced from cleavage of HARP by plasmin, affect in vivo and in vitro angiogenesis and modulate the angiogenic activity of vascular endothelial growth factor on human umbilical vein endothelial cells. Similar results were obtained in vitro with recombinant HARP peptides, identical to the peptides generated after treatment of HARP with plasmin. These results suggest that different regions of HARP may induce or inhibit angiogenesis.  相似文献   

6.
New blood vessel formation (angiogenesis) is one of the most important processes required for functional tissue formation. Induction of angiogenesis is usually triggered by growth factors released by cells. Glycosaminoglycans (e.g., heparan sulphates) in the extracellular matrix aid in proper functioning of these growth factors. Therefore, exogeneous heparin or growth factors were required for promoting angiogenesis in previous regenerative medicine studies. Here we report for the first time induction of angiogenesis by a synthetic nanofibrous peptide scaffold without the addition of any exogenous growth factors or heparin. We designed and synthesized a self-assembling peptide amphiphile molecule that is functionalized with biologically active groups to mimic heparin. Like heparin, this molecule has the ability to interact with growth factors and effectively enhance their bioactivity. The nanofibers formed by these molecules were shown to form a 3D network mimicking the structural proteins in the extracellular matrix. Because of heparin mimicking capabilities of the peptide nanofibers, angiogenesis was induced without the addition of exogenous growth factors in vitro. Bioactive interactions between the nanofibers and the growth factors enabled robust vascularization in vivo as well. Heparin mimetic peptide nanofibers presented here provide new opportunities for angiogenesis and tissue regeneration by avoiding the use of heparin and exogenous growth factors. The synthetic peptide nanofiber scaffolds enriched with proper chemical functional groups shown in this study can be used to induce various desired physiological responses for tissue regeneration.  相似文献   

7.
HARP (heparin affin regulatory peptide) is a growth factor displaying high affinity for heparin. In the present work, we studied the ability of human recombinant HARP as well as its two terminal peptides (HARP residues 1-21 and residues 121-139) to promote angiogenesis. HARP stimulates endothelial cell tube formation on matrigel, collagen and fibrin gels, stimulates endothelial cell migration and induces angiogenesis in the in vivo chicken embryo chorioallantoic membrane assay. The two HARP peptides seem to be involved in most of the angiogenic effects of HARP. They both stimulate in vivo angiogenesis and in vitro endothelial cell migration and tube formation on matrigel. We conclude that HARP has an angiogenic activity when applied exogenously in several in vitro and in vivo models of angiogenesis and its NH(2) and COOH termini seem to play an important role.  相似文献   

8.
A synthetic gene for human platelet factor 4 (hPF4) has been expressed at high levels as a fusion protein in Escherichia coli. The hPF4 sequence has been cleaved from the fusion protein by cyanogen bromide treatment and purified by column chromatography. Like hPF4, our recombinant hPF4 (rhPF4) is tetrameric under physiological conditions, binds heparin, and inhibits angiogenesis. Extensive purification to remove trace amounts of uncleaved fusion protein completely from the desired product rhPF4 was difficult. We have exploited recombinant DNA technology by modifying the fusion moiety to accomplish separation. This type of modification, which did not affect expression level, could be applied to other recombinant fusion proteins.  相似文献   

9.
We investigated the mechanism by which heparin enhances the binding of vascular endothelial growth factor (VEGF) to the extracellular matrix protein fibronectin. In contrast to other systems, where heparin acts as a protein scaffold, we found that heparin functions catalytically to modulate VEGF binding site availability on fibronectin. By measuring the binding of VEGF and heparin to surface-immobilized fibronectin, we show that substoichiometric amounts of heparin exposed cryptic VEGF binding sites within fibronectin that remain available after heparin removal. Measurement of association and dissociation kinetics for heparin binding to fibronectin indicated that the interaction is rapid and transient. We localized the heparin-responsive element to the C-terminal 40-kDa Hep2 domain of fibronectin. A mathematical model of this catalytic process was constructed that supports a mechanism whereby the heparin-induced conformational change in fibronectin is accompanied by release of heparin. Experiments with endothelial extracellular matrix suggest that this process may also occur within biological matrices. These results indicate a novel mechanism whereby heparin catalyzes the conversion of fibronectin to an open conformation by transiently interacting with fibronectin and progressively hopping from molecule to molecule. Catalytic activation of the extracellular matrix might be an important mechanism for heparin to regulate function during normal and disease states.  相似文献   

10.
We have examined the cellular mechanisms by which heparin potentiates the ability of 3T3-adipocytes to stimulate the formation of new blood vessels. Both anticoagulant and non-anticoagulant heparin species enhanced the angiogenic activity of adipocyte-secreted products in the chick chorioallantoic membrane assay, indicating that the angiotropic effect of this glycosaminoglycan is independent of its effect on the coagulation cascade. Heparin alone was unable to produce a neovascular response. The ability of heparin to modulate three endothelial functions in vitro thought to be related to angiogenesis were examined: protease activity, motility, and mitogenesis. Heparin caused a 100% increase in the adipocyte-induced stimulation of endothelial cell plasminogen activator activity and motility, but had no effect on proliferation. The enhancement of plasminogen activator and chemoattractant activities had a similar ED50 (1-2 micrograms/ml) and optimum dose (10-30 micrograms/ml). When we examined the direct effect of heparin on the activity of two distinct plasminogen activator enzymes--urokinase and tissue-type--a dual action of heparin was observed: tissue-type enzyme activity was stimulated 100% by heparin at 10 micrograms/ml, whereas urokinase activity was inhibited by 77% at this dose. These data suggest that heparin potentiates angiogenesis in vivo by stimulating endothelial cell plasminogen activator, motility, or both. Our results further suggest that for adipocyte-induced blood vessel formation, in contrast to other angiogenesis systems, heparin does not appear to affect the mitogenic activity.  相似文献   

11.
E Hohenester  T Sasaki  B R Olsen    R Timpl 《The EMBO journal》1998,17(6):1656-1664
A number of extracellular proteins contain cryptic inhibitors of angiogenesis. Endostatin is a 20 kDa C-terminal proteolytic fragment of collagen XVIII that potently inhibits endothelial cell proliferation and angiogenesis. Therapy of experimental cancer with endostatin leads to tumour dormancy and does not induce resistance. We have expressed recombinant mouse endostatin and determined its crystal structure at 1.5 A resolution. The structure reveals a compact fold distantly related to the C-type lectin carbohydrate recognition domain and the hyaluronan-binding Link module. The high affinity of endostatin for heparin is explained by the presence of an extensive basic patch formed by 11 arginine residues. Endostatin may inhibit angiogenesis by binding to the heparan sulphate proteoglycans involved in growth factor signalling.  相似文献   

12.
Basic fibroblast growth factor (bFGF) is a therapeutic target of anti-angiogenesis. Here, we report that a novel sulfated glycopeptide derived from Gekko swinhonis Guenther (GSPP), an anticancer drug in traditional Chinese medicine, inhibits tumor angiogenesis by targeting bFGF. GSPP significantly decreased the production of bFGF in hepatoma cells by suppressing early growth response-1. GSPP inhibited the release of bFGF from extracellular matrix by blocking heparanase enzymatic activity. Moreover, GSPP competitively inhibited bFGF binding to heparin/heparan sulfate via direct binding to bFGF. Importantly, GSPP abrogated the bFGF-stimulated proliferation and migration of endothelial cells, whereas it had no inhibitory effect on endothelial cells in the absence of bFGF. Further study revealed that GSPP prevented bFGF-induced neovascularization and inhibited tumor angiogenesis and tumor growth in a xenograft mouse model. These results demonstrate that GSPP inhibits tumor angiogenesis by blocking bFGF production, release from the extracellular matrix, and binding to its low affinity receptor, heparin/heparan sulfate.  相似文献   

13.
ABSTRACT

Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and heparin derivatives, are commonly used in venous thromboembolism treatment and reportedly have beneficial effects on cancer survival. Heparin can affect the proliferation, adhesion, angiogenesis, migration and invasion of cancer cells via multiple mechanisms. The main mechanisms involve inhibition of heparanase, P-/L-selectin, angiogenesis, and interference with the CXCL12-CXCR4 axis. Here we summarize the current experimental evidence regarding the anti-cancer role of heparin and its derivatives, and conclude that there is evidence to support heparin’s role in inhibiting cancer progression, making it a promising anti-cancer agent.  相似文献   

14.
15.
Development of the retinal vascular network is strictly confined within the neuronal retina, allowing the intraocular media to be optically transparent. However, in retinal ischemia, pro-angiogenic factors (including vascular endothelial growth factor-A, VEGF-A) induce aberrant guidance of retinal vessels into the vitreous. Here, we show that the soluble heparan sulfate level in murine intraocular fluid is high particularly during ocular development. When the eyes of young mice with retinal ischemia were treated with heparan sulfate-degrading enzyme, the subsequent aberrant angiogenesis was greatly enhanced compared to PBS-injected contralateral eyes; however, increased angiogenesis was completely antagonized by simultaneous injection of heparin. Intraocular injection of heparan sulfate or heparin alone in these eyes resulted in reduced neovascularization. In cell cultures, the porcine ocular fluid suppressed the dose-dependent proliferation of human umbilical vein endothelial cells (HUVECs) mediated by VEGF-A. Ocular fluid and heparin also inhibited the migration and tube formation by these cells. The binding of VEGF-A and HUVECs was reduced under a high concentration of heparin or ocular fluid compared to lower concentrations of heparin. In vitro assays demonstrated that the ocular fluid or soluble heparan sulfate or heparin inhibited the binding of VEGF-A and immobilized heparin or VEGF receptor 2 but not VEGF receptor 1. The recognition that the high concentration of soluble heparan sulfate in the ocular fluid allows it to serve as an endogenous inhibitor of aberrant retinal vascular growth provides a platform for modulating heparan sulfate/heparin levels to regulate angiogenesis.  相似文献   

16.
The thienopyridine, ticlopidine, a potent platelet antiaggregating agent and SR 25989, an esterified derivative of ticlopidine, devoid of antiplatelet activity, were tested in an in vitro model of healing of a mechanical wound in confluent endothelium. This model allows exploration of substances involved in wound healing and angiogenesis. These two compounds inhibited both cell proliferation and cell migration during lesion repair in a dose-dependent manner (18–150 μM), SR 25989 being twice as active as ticlopidine. Its effect was not inhibited by acidic or basic fibroblast growth factor or by platelet derived growth factor. In contrast, it exerted a conjugated inhibition with standard heparin and was able to totally reverse the healing increase induced by a mixture of acidic fibroblast growth factor and heparin. The mechanism of action of SR 25989 is not yet elucidated, but it does not seem to involve competition with fibroblast growth factors since these substances were not able to alter their binding to receptors on the endothelial cell surface. SR 25989 therefore appears as a promising new candidate for inhibition of angiogenesis. © 1994 Wiley-Liss, Inc.  相似文献   

17.
We describe new DOC (sodium deoxycholate)-heparin nanoparticles for in vivo tumor targeting and inhibition of angiogenesis based on chemical conjugation and the enhanced permeability and retention (EPR) effect. Heparin has been used as a potent anticoagulant agent for 70 years, and has recently been found to inhibit the activity of growth factors which stimulate the smooth muscle cells around tumor. From the results, DOC and heparin were conjugated by bonding carboxyl groups of heparin with amine groups of aminated sodium deoxycholate. Larger antitumor effects of the DOC-heparin VI (8.5 mol of DOC coupled with 1.0 mol heparin) were achieved in animal studies, compared to heparin alone. We confirmed that the conjugated heparin retained its ability to inhibit binding with angiogenic factor, showing a significant decrease in endothelial tubular formation. These results provide new insights into the nontoxic anticancer drug carrier as well as the design of multifunctional bioconjugates for targeted drug delivery.  相似文献   

18.
Mitsi M  Hong Z  Costello CE  Nugent MA 《Biochemistry》2006,45(34):10319-10328
Regulation of angiogenesis involves interactions between vascular endothelial growth factor (VEGF) and components of the extracellular matrix, including fibronectin and heparan sulfate. In the present study, we identified two classes of VEGF binding sites on fibronectin. One was constitutively available whereas the availability of the other was modulated by the conformational state of fibronectin. Atomic force microscopy studies revealed that heparin and hydrophilic substrates promoted the extended conformation of fibronectin, leading to increased VEGF binding. The ability of heparin to enhance VEGF binding to fibronectin was dependent on the chemical composition and chain length of heparin, since long (>22 saccharides) heparin chains with sulfation on the 6-O and N positions of glucosamine units were required for full activity. Treatment of the complex endothelial extracellular matrix with heparin also increased VEGF binding, suggesting that heparin/heparan sulfate might regulate VEGF interactions within the extracellular matrix by controlling the structure and organization of fibronectin matrices.  相似文献   

19.
Vasohibin is a newly identified negative feedback regulator for angiogenesis. When expressed in cultured human endothelial cells, vasohibin polypeptides were detected in multiple distinct molecular weight forms, suggesting that some proteolytic events may occur within cells or the pericellular milieu. In order to identify the proteolysis sites, vasohibin cDNA mutants were generated to substitute some basic amino acids with alanine and then were transfected into endothelial cells. Western blots with anti-vasohibin monoclonal antibody following the transfection showed that there were at least two cleaving sites in the amino terminal region. Purified recombinant protein of the amino terminal truncated forms not only retained its inhibitory activity on angiogenesis in mouse corneal assay but also showed strong affinity to heparin. Moreover, deletion of some basic residues at the carboxyl terminal resulted in abrogation of both antiangiogenic and heparin-binding activities. Processing patterns and biological activities of the processed forms of this novel antiangiogenic factor are discussed.  相似文献   

20.
Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号