首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The keratins are a highly heterogeneous group of proteins that form intermediate filaments in a wide variety of epithelial cells. These proteins can be divided into at least seven major classes according to their molecular weight and their immunological reactivity with monoclonal antibodies. Tissue-distribution studies have revealed a correlation between the expression of specific keratin classes and different morphological features of in vivo epithelial differentiation (simple vs. stratified; keratinized vs. nonkeratinized). Specifically, a 50,000- and a 58,000-dalton keratin class were found in all stratified epithelia but not in simple epithelia, and a 56,500- and a 65-67,000-dalton keratin class were found only in keratinized epidermis. To determine whether these keratin classes can serve as markers for identifying epithelial cells in culture, we analyzed cytoskeletal proteins from various cultured human cells by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The 56,500- and 65-67,000-dalton keratins were not expressed in any cultured epithelial cells examined so far, reflecting the fact that none of them underwent morphological keratinization. The 50,000- and 58,000-dalton keratin classes were detected in all cultured cells that originated from stratified squamous epithelia, but not in cells that originated from simple epithelia. Furthermore, human epidermal cells growing as a monolayer in low calcium medium continued to express the 50,000- and 58,000-dalton keratin classes. These findings suggest that the 50,000- and 58,000-dalton keratin classes may be regarded as "permanent" markers for stratified squamous epithelial cells (keratinocytes), and that the expression of these keratin markers does not depend on the process of cellular stratification. The selective expression of the 50,000- and 58,000-dalton keratin classes, which are synthesized in large quantities on a per cell basis, may explain the high keratin content of cultured keratinocytes.  相似文献   

2.
Using an in vivo rabbit model system, we have studied the morphological and biochemical changes in corneal, conjunctival, and esophageal epithelia during vitamin A deficiency. Light and electron microscopy showed that the three epithelia undergo different degrees of morphological keratinization. Corneal and conjunctival epithelia became heavily keratinized, forming multiple layers of superficial, anucleated cornified cells. In contrast, esophageal epithelium underwent only minor morphological changes. To correlate morphological alterations with the expression of specific keratin molecules, we have analyzed the keratins from these epithelia by the immunoblot technique using the subfamily-specific AE1 and AE3 monoclonal antikeratin antibodies. The results indicate that during vitamin A deficiency, all three epithelia express an AE1-reactive, acidic 56.5-kd keratin and an AE3-reactive, basic 65-67-kd keratin. Furthermore, the expression of these two keratins correlated roughly with the degree of morphological keratinization. AE2 antibody (specific for the 56.5- and 65-67-kd keratins) stained keratinized corneal epithelial sections suprabasally, as in the epidermis, suggesting that these two keratins are expressed mainly during advanced stages of keratinization. These two keratins have previously been suggested to represent markers for epidermal keratinization. Our present data indicate that they can also be expressed by other stratified epithelia during vitamin A deficiency-induced keratinization, and suggest the possibility that they may play a role in the formation of the densely packed tonofilament bundles in cornified cells of keratinized tissues.  相似文献   

3.
The major structural proteins of epithelia, the keratins, and the keratin filament-associated protein, filaggrin, were analyzed in more than 50 samples of human embryonic and fetal skin by one-dimensional SDS PAGE and immunoblotting with monoclonal and polyclonal antibodies. Companion samples were examined by immunohistochemistry and electron microscopy. Based on structural characteristics of the epidermis, four periods of human epidermal development were identified. The first is the embryonic period (before 9 wk estimated gestational age), and the others are within the fetal period: stratification (9-14 wk), follicular keratinization (14-24 wk), and interfollicular keratinization (beginning at approximately 24 wk). Keratin proteins of both the acidic (AE1-reactive, type I) and the basic (AE3-reactive, type II) subfamilies were present throughout development. Keratin intermediate filaments were recognized in the tissue by electron microscopy and immunohistochemical staining. Keratins of 50 and 58 kD were present in the epidermis at all ages studied (8 wk to birth), and those of 56.5 and 67 kD were expressed at the time of stratification and increased in abundance as development proceeded. 40- and 52-kD keratins were present early in development but disappeared with keratinization. Immunohistochemical staining suggested the presence of keratins of 50 and 58 kD in basal cells, 56.5 and 67 kD in intermediate cells, and 40 and 52 kD in the periderm as well as in the basal cells between the time of stratification and birth. Filaggrin was first detected biochemically at approximately 15 wk and was localized immunohistochemically in the keratinizing cells that surround hair follicles. It was identified 8-10 wk later in the granular and cornified cell layers of keratinized interfollicular epidermis. These results demonstrate the following. An intimate relationship exists between expression of structural proteins and morphologic changes during development of the epidermis. The order of expression of individual keratins is consistent with the known expression of keratins in simple vs. stratified vs. keratinized epithelia. Expression of keratins typical of stratified epithelia (50 and 58 kD) precedes stratification, and expression of keratins typical of keratinization (56.5 and 67 kD) precedes keratinization, which suggests that their expression marks the tissue commitment to those processes. Because only keratins that have been demonstrated in various adult tissues are expressed during fetal development, we conclude that there are no "fetal" keratins per se.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Summary We examined rat cells undergoing amelogenesis for the presence of three types of keratin proteins using a polyclonal antibody to keratin (against total keratins (TK) with molecular masses ranging from 41 to 65 kilodaltons (kd) and monoclonal antibodies keratins to KL1 and PKK1 (reactive with keratins with molecular masses of 55–57 and 41–56 kd, respectively). In normal oral epithelia from young rats, the TK, KL1, and PKK1 antibodies bound to all of the epithelial strata. The epithelial cap on the top of incisors and the dental lamina of molar teeth exhibited strong TK staining, moderate staining KL1, and little or no PKK1 staining. In developing molar enamel organs, both the outer and inner enamel epithelia, the stratum intermedium, and stellate reticulum cells were all positively stained by the TK immunoreagent. In developing incisors, TK only bound strongly to stratum-intermedium cells, and no KL1 and PKK1 staining antibodies was observed in ameloblasts or the stratum intermedium.  相似文献   

5.
The polypeptide composition of epidermal keratin varies in disease. To better understand the biological meaning of these variations, we have analyzed keratins from a number of human epidermal diseases by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The results reveal a continuous spectrum of keratin expression ranging from one closely resembling the normal in vivo pattern to one almost identical to cultured epidermal keratinocytes. Specifically, a 50-kilodalton (kd) (AE1-positive) and a 58-kd (AE3-positive) keratin are present in all diseases, supporting the concept that they represent "permanent" markers for keratinocytes. A 56.5-kd (AE1) and a 65-67-kd (AE3) keratin, previously shown to be markers for keratinization, are expressed only by lesions retaining a keratinized morphology. A 48-kd (AE1) and a 56-kd (AE3) keratin are present in all hyperproliferative (para- or nonkeratinized) disorders, but not in normal abdominal epidermis or in ichthyosis vulgaris which is a nonhyperproliferative disease. These two keratins have previously been found in various nonepidermal keratinocytes undergoing hyperproliferation, suggesting that these keratins are not epidermis-specific and may represent markers for hyperproliferative keratinocytes in general. In various epidermal diseases, there is a reciprocal expression of the (keratin) markers for hyperproliferation and keratinization, supporting the mutual exclusiveness of the two cellular events. Moreover, our results indicate that, as far as keratin expression is concerned, cultured human epidermal cells resemble and thus may be regarded as a model for epidermal hyperplasia. Finally, the apparent lack of any major, disease-specific keratin changes in the epidermal disorders studied so far implies that keratin abnormalities probably represent the consequence, rather than the cause, of these diseases.  相似文献   

6.
From the shark Scyliorhinus stellaris we cloned and sequenced a cDNA encoding a novel type I keratin, termed SstK10. By MALDI-MS peptide mass fingerprinting of cytoskeletal proteins separated on polyacrylamide gels, we assigned SstK10 to a 46-kDa protein which is the major epidermal type I ("IE") keratin in this fish and is specifically expressed in stratified epithelia. In a phylogenetic tree based on type I keratin sequences and with lamprey keratins applied as outgroup, SstK10 branches off in a rather basal position. This tree strongly supports the concept that teleost keratins and tetrapod keratins resulted from two independent gene radiation processes. The only exception is human K18 because its orthologs have been found in all jawed vertebrates (Gnathostomata) studied; in the tree, they form a common, most early branch, with the shark version, SstK18, in the most basal position. Thus, the sequences of SstK10 and SstK18 also favor the classical view of vertebrate evolution that considers the cartilaginous fishes as the most ancient living Gnathostomata. To determine the overall expression patterns of epidermal ("E") and simple epithelial ("S") keratins in this shark, we furthermore tested a panel of monoclonal anti-keratin antibodies by immunofluorescence microscopy of frozen tissue sections, and in immunoblots of cytoskeletal preparations, demonstrating that immunodetection of specific keratins is a convenient method to characterize epithelial tissues in shark.  相似文献   

7.
E Fuchs  H Green 《Cell》1981,25(3):617-625
Vitamin A is known to exert an important influence on epithelial differentiation. The fetal calf serum supplement of cell-culture medium contains enough of the vitamin to affect the differentiation of cultured keratinocytes derived from epidermis and from other stratified squamous epithelia. The cellular and molecular properties of the cultures are altered when the medium is supplemented with serum from which the vitamin A has been removed by solvent extraction (delipidized serum). Cell motility is reduced, the adhesiveness of cells increases and pattern formation is prevented. In both epidermal and conjunctival keratinocytes, removal of vitamin A leads to the synthesis of a 67 kd keratin characteristic of terminally differentiating epidermis and to much reduced synthesis of the 52 kd and 40 kd keratins typical of conjunctiva. These changes, both cellular and molecular, are reversed by the addition of retinyl acetate to the medium containing delipidized serum. Cell motility and pattern formation are restored, and detachment of the most mature cells from the surface of the stratified epithelium is promoted. Synthesis of the 67 kd keratin is prevented and the synthesis of the 40 and 52 kd keratins is stimulated. The nature of the keratins synthesized is regulated by the concentration of vitamin A, and each cell type adjusts its synthesis differently at a given vitamin concentration.  相似文献   

8.
We examined rat cells undergoing amelogenesis for the presence of three types of keratin proteins using a polyclonal antibody to keratin (against total keratins (TK) with molecular masses ranging from 41 to 65 kilodaltons (kd) and monoclonal antibodies keratins to KL1 and PKK1 (reactive with keratins with molecular masses of 55-57 and 41-56 kd, respectively). In normal oral epithelia from young rats, the TK, KL1, and PKK1 antibodies bound to all of the epithelial strata. The epithelial cap on the top of incisors and the dental lamina of molar teeth exhibited strong TK staining, moderate staining KL1, and little or no PKK1 staining. In developing molar enamel organs, both the outer and inner enamel epithelia, the stratum intermedium, and stellate reticulum cells were all positively stained by the TK immunoreagent. In developing incisors, TK only bound strongly to stratum-intermedium cells, and no KL1 and PKK1 staining antibodies was observed in ameloblasts or the stratum intermedium.  相似文献   

9.
Dividing populations of stratified and simple epithelial tissues express keratins 5 and 14, and keratins 8 and 18, respectively. It has been suggested that these keratins form a mechanical framework important to cellular integrity, since their absence gives rise to a blistering skin disorder in neonatal epidermis, and hemorrhaging within the embryonic liver. An unresolved fundamental issue is whether different keratins perform unique functions in epithelia. We now address this question using transgenic technology to express a K16-14 hybrid epidermal keratin transgene and a K18 simple epithelial keratin transgene in the epidermis of mice null for K14. Under conditions where the hybrid epidermal keratin restored a wild-type phenotype to newborn epidermis, K18 partially but not fully rescued. The explanation does not appear to reside in an inability of K18 to form 10-nm filaments with K5, which it does in vitro and in vivo. Rather, it appears that the keratin network formed between K5 and K18 is deficient in withstanding mechanical stress, leading to perturbations in the keratin network in regions of the skin that are subjected either to natural or to mechanically induced trauma. Taken together, these findings suggest that the loss of a type I epidermal keratin cannot be fully compensated by its counterpart of simple epithelial cells, and that in vivo, all keratins are not equivalent.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号