首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 120 毫秒
1.
运用广义形态学性状对虎尾草亚科(Chloridoideae)进行系统发育分析。内类群包括虎尾草亚科52属的69种植物,代表虎尾草亚科的主要类群;芦竹亚科(Arundinoideae)扁芒草族(Danthonieae)的Centropodia和Danthonia被选作外类群。分支分析表明,虎尾草亚科是一个单系类群。其严格一致树包括A、B、C、D、E5个分支。两个大族画眉草族(Eragrostideae)和虎尾草族(Chlorideae)代表虎尾草亚科内部类群分化的两个方向,分开处理较合理。细穗草族(Leptureae)放到虎尾草族中较合理。冠芒草族(Pappophoreae)是虎尾草亚科的基部类群,与画眉草族近缘。我们的研究支持虎尾草亚科从旧世界向新世界扩散的地理分布假说,并提供了虎尾草亚科属上类群的系统发育关系的框架。  相似文献   

2.
禾本科叶片表皮结构细胞的组合式样及其分类学意义   总被引:5,自引:1,他引:4  
蔡联炳 《植物研究》1999,19(4):415-427
利用光学显微镜,对禾本科204属373种植物的叶片表皮进行了观察。发现禾本科叶片表皮细胸细胞在下表面上的分布式样可以划分为5个基本类型,即竹型、稻型、黍型、虎尾草型和早熟禾型,而5个基本类型所附属的植物类群分别是禾本科中的竹亚科、稻亚科、虎尾草亚科早熟禾亚科。同时分析了这5个类型的演化水平,并同类群的外部形态、地理分布相印证,表明竹亚科最原始、稻亚科次之、黍亚科演化居中、虎尾草亚科较高级、早熟禾亚科最高级;禾本科可能起源于世界的热带区域。  相似文献   

3.
基于matR基因序列分析的山茶科系统关系   总被引:2,自引:2,他引:0  
通过线粒体matR基因序列分析探讨了山茶科的分类学范围和系统演化关系。结果显示,传统山茶科的两个核心——山茶亚科(Theoideae或Camellioideae)和厚皮香亚科(Ternstroemioideae)不构成姐妹群关系,山茶亚科是一个支持率很高的单系类群,厚皮香亚科没有形成单系;山茶亚科下可区分出3个明显的分支,基部的分支由紫茎属(Stewartia)和舟柄茶属(Hartia)组成,木荷属(Schima)、美洲荷属(Franklirda)和美国大头茶属(Gordonia)构成第2个分支,该分支与由山茶属(Camellia)、核果茶属(Pyrenaria)、多瓣核果茶属(Parapyrenaria)、石笔木属(Tutcheria)、大头荣属(Polyspora)和圆籽荷属(Aptersperma)组成的第3个分支互为姐妹群。研究结果很好地支持了Prince和Parks等学者提出的的狭义山茶科(仅含山茶亚科)和狭义大头茶属的概念以及科下3个族(紫茎族Stewartieae、大头茶族Gordonieae和山茶族Theeae)的划分。但本研究更为清晰地揭示了科下3个族间的系统关系,即紫茎族是最基部的分支,山茶族与大头茶族间有更近的亲缘关系。同时,本文认为,厚皮香(亚)科是否为单系类群值得进一步研究。  相似文献   

4.
以线粒体细胞色素氧化酶I(COI)基因作分子标记,对线蛱蝶亚科蝴蝶进行序列测定.序列分析的结果表明.经比对和处理后的序列总长度是645bp,其中有199个变异位点,147个简约信息位点;所编码的氨基酸序列中有18个变异位点,7个信息位点.A+T平均含量为69.6%,G+C平均含量为30.4%,碱基组成出现AT偏斜.以蛱蝶亚科及秀蛱蝶亚科物种为外类群,用NJ、MP及贝叶斯法重建了该亚科的系统发生树,探讨了它们主要类群间的系统发生关系.分子系统树显示,线蛱蝶亚科由以下3大支系:环蛱蝶族+翠蛱蝶族、线蛱蝶族、丽蛱蝶族构成;其中,环蛱蝶族为单系群(NJ树也支持线蛱蝶族的单系性);翠蛱蝶族与环蛱蝶族亲缘关系较近:丽蛱蝶族可能是该亚科较早分化出的一支.  相似文献   

5.
稻族的系统发育及其研究进展   总被引:4,自引:0,他引:4  
稻族Oryzeae是禾本科Poaceae中包含多种经济植物的重要类群, 现有大约12个属, 广布全球的热带和温带地区。由于其重要的经济价值和在理论研究上的代表性, 稻属Oryza及其近缘属的研究受到了广泛关注。虽然形态学和初步的分子证据表明稻族是一个单系类群, 但稻族内各属的分类处理和属间系统发育关系以及稻族的起源、地理分布式样和机制等方面仍存在许多悬而未决的问题。本文简要回顾了稻族系统学研究的历史, 包括稻族的建立及其在禾本科中的系统位置、稻族的族下划分、稻族各属的界定及其系统发育关系。目前已有的研究结果表明: 稻族是单系类群, 可分为两个主要分支, 相当于传统的两个亚族(Zizaniinae和Oryzinae), 但稻族单性花小穗是多次起源的, 不宜作为划分亚族的依据; 一些单型属(Hydrochloa、Porteresia和Prosphytochloa)的建立得不到分子证据的支持; 根据分子钟原理估计稻族两个主要分支(亚族)的分歧时间在大约2000万年前, 而稻属和近缘属假稻属Leersia的分歧时间为1400万年; 稻属内主要类群的分歧时间在900万年前左右。此外, 本文还对稻族的生物地理学问题进行了初步探讨, 对稻族系统发育和进化研究中存在的问题及未来研究方向进行了讨论。  相似文献   

6.
【目的】针对中国灰蝶科中亲缘关系较近的3个主要亚科[灰蝶亚科(Lycaeninae)、线灰蝶亚科(Theclinae)以及眼灰蝶亚科(Polyommatina)],基于线粒体基因序列数据研究它们主要类群间的系统发育关系。【方法】对3亚科共53种灰蝶的线粒体 COI 和 Cytb 基因进行序列测定和序列变异分析,同时,基于最大似然法(maximum likelihood, ML)和贝叶斯法(bayesian inference, BI)等建树方法重建53种灰蝶的系统发育树。【结果】串联的2个基因共1 431 bp,其中保守位点855个,可变位点576个,简约信息位点488个;A+T的平均含量为74.5%,明显高于G+C的平均含量(25.5%)。系统树显示,灰蝶亚科以及眼灰蝶亚科均是单系发生,线灰蝶亚科则为并系群。全部灰蝶物种共分为三大支系:灰蝶亚科为第1支系;眼灰蝶亚科与线灰蝶亚科中的旖灰蝶族(Hypolycaenini)、富丽灰蝶族(Aphnaeini)分别构成单系群并互为姊妹群,它们共同构成第2支系;线灰蝶亚科中的美灰蝶族(Eumaeini)、玳灰蝶族(Deudorigini)、娆灰蝶族(Arhopalini)和线灰蝶族(Theclini)构成第3支系,其亲缘关系为:(((线灰蝶族+娆灰蝶族)+玳灰蝶族)+美灰蝶族)。【结论】本研究涉及的3个灰蝶亚科中,灰蝶亚科是一个独立的支系,眼灰蝶亚科与线灰蝶亚科之间有较近的亲缘关系,但它们内部主要类群间的系统发育关系还需要进一步的研究。  相似文献   

7.
巴西是全球生物多样性最丰富的地区,其竹类多样性也极为丰富。结合现存资料及野外调查,对巴西全境的竹类分布格局进行了讨论。巴西全国有原生竹亚科植物256种(含2亚种及3变种),北部地区草本竹类(莪莉竹族)最丰富,有61种,而东南部地区木本竹类(箣竹族)最丰富,有96种。偏穗竹属(Merostachys)(43种)和丘斯夸竹属(Chusquea)(45种)是最常见的属,并是最具潜在经济利用的竹类。属种的特有性分别高达32.4%和68.8%。特有属有11个,分别为莪莉竹族的双药莪利草竹属(Diandrolyra)、独焰草竹属(Eremitis)、小百瑞草竹属(Parianella)、赖茨草竹属(Reitzia)、苏克蕾草竹属(Sucrea)和箣竹族的南美梨藤竹属(Alvimia)、离枝竹属(Apoclada)、密穗竹属(Athroostachys)、卡姆巴珠瓦竹属(Cambajuva)、菲尔盖拉斯竹属(Filgueirasia)、无枝竹属(Glaziophyton)。  相似文献   

8.
中国主要禾本科植物花的基本类型与系统分类   总被引:3,自引:0,他引:3  
本文研究、分析了禾本科33个族、174个属(632种)的花的性状;讨论了重要性状演化的趋势。根据花、尤其花中鳞被的比较形态,把禾本科植物的花概括为三大类型七个亚型:竹型(包括真竹亚型,稻亚型、芦竹亚型、针茅亚型)、早熟禾型(含早熟禾亚型)和黍型(包括画眉草亚型,真黍亚型)。其结果与花的基本类型相对应的大类群,以及与幼苗基本类型、颖果基本类型相对应的大类群是一致的,即竹亚科、稻亚科、芦竹亚科、针茅亚科、早熟禾亚科、画眉草亚科,黍亚科。  相似文献   

9.
试图根据成虫形态学证据探讨长足虻科各亚科之间的系统关系,同时检验各个亚科的单系性.在比较形态学研究基础上,同时参考前人有关长足虻科高阶元分类的研究结果,筛选出42个来自头部、胸部(包括足和翅)、腹部、雌性和雄性外生殖器在亚科水平的分类特征,为了考察亚科的单系性,也包括亚科的自有衍征;运用支序分类的方法,首次分析并讨论了世界长足虻科17个亚科之间的系统发育关系.结果表明,长足虻科是一个严格的单系群,其支持的共同衍征为体色金绿,亚前缘脉端部与第1径脉中部愈合,前缘脉接近肩横脉处有1个缺刻,第2基室与盘室愈合,臀室短小、终止于径脉分叉点之前,雄性外生殖器明显向下或向前弯折,生殖背板具生殖孔,下生殖板与第9背板愈合.金长足虻亚科Sciapodinae腋瓣发达,中脉分叉,为最基部的支系,是最原始的亚科;而长足虻科的其他亚科构成一单系群,其共同衍征为腋瓣不明显,中脉不分叉.斜脉长足虻亚科Plagioneurinae也比较原始,是靠基部的支系,支持其单系性的特征为腹部第7~8节膜质化,生殖孔基位.异长足虻亚科Diaphorinae和锥长足虻亚科Rhaphiinae以及斯长足虻亚科Stolidosomatinae和合长足虻亚科Sympycninae分别构成姊妹群关系,斯长足虻亚科Stolidosomatinae的两个属Pseudosympycnus和Stolidosoma系统地位还有待进一步研究.此外,巴长足虻亚科Babindellinae、聚脉长足虻亚科Medeterinae和寇长足虻亚科Kowmunginae构成单系群,其共同衍征为臀脉短或不明显,无后顶鬃.研究所用标本大部分保存在中国农业大学昆虫标本馆,包括与美国史密森研究院和澳大利亚博物馆交换而来的标本,部分标本保存在比利时皇家科学院.  相似文献   

10.
缘蝽科的比较形态学研究Ⅰ(异翅亚目:缘蝽总科)   总被引:1,自引:0,他引:1  
本研究叙述了缘蝽科的基本特征以及缘蝽科中22个族或亚科级单元的比较形态学特征,特别是外生殖器的特征描述及其图解多为首次报道。认为瘤缘蝽族、喙缘蝽族、竹缘蝽族、沟缘蝽亚科、达缘蝽族、同缘蝽族、特缘蝽族及美洲各族(或亚科)为单系群;梭缘蝽族(包括唯一属梭缘蝽属)的族级地位成立;缘蝽族各属关系复杂;黛缘蝽族是一个复系类群,各属关系复杂,在头部、阳茎和雄虫生殖腔等方面的构造已呈明显差异,此族似不成立;岗缘蝽族应是一单系群,但Plinachtusbasalis似应独立成属并移出岗缘蝽族;曼缘蝽族、昧缘蝽族及鼻缘蝽族[仅1属1种,该属另外1种SinotngusrubromaculusHsiao被移到类缘蝽属中,即Anacanthocorisrubromaculus(Hsiao)(n.comb,新组合)为单属族,它们的系统学地位有待进一步研究;希缘蝽族(或亚科)身体构造很特异,是较原始的缘蝽类群;棒缘蝽亚科亦为较原始的类群,其中棒缘蝽属群各属组成一单系群,证明Stal(1873)将它们成立棒缘蝽族合理;其余棒缘蝽亚科各属虽在某些外部形态上表现出一定的亲缘关系,但属间特征交叉,且与棒缘蝽族有许多共同特征,若归为一族,则造成  相似文献   

11.
The taxonomy of Bambusoideae is in a state of flux and phylogenetic studies are required to help resolve systematic issues. Over 60 taxa, representing all subtribes of Bambuseae and related non-bambusoid grasses were sampled. A combined analysis of five plastid DNA regions, trnL intron, trnL-F intergenic spacer, atpB-rbcL intergenic spacer, rps16 intron, and matK, was used to study the phylogenetic relationships among the bamboos in general and the woody bamboos in particular. Within the BEP clade (Bambusoideae s.s., Ehrhartoideae, Pooideae), Pooideae were resolved as sister to Bambusoideae s.s. Tribe Bambuseae, the woody bamboos, as currently recognized were not monophyletic because Olyreae, the herbaceous bamboos, were sister to tropical Bambuseae. Temperate Bambuseae were sister to the group consisting of tropical Bambuseae and Olyreae. Thus, the temperate Bambuseae would be better treated as their own tribe Arundinarieae than as a subgroup of Bambuseae. Within the tropical Bambuseae, neotropical Bambuseae were sister to the palaeotropical and Austral Bambuseae. In addition, Melocanninae were found to be sister to the remaining palaeotropical and Austral Bambuseae. We discuss phylogenetic and morphological patterns of diversification and interpret them in a biogeographic context.  相似文献   

12.
Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data   总被引:3,自引:0,他引:3  
DNA sequence data from the chloroplast noncoding rpl16 intron are used to address phylogenetic relationships among the major lineages of the grass family, with particular emphasis on the highly heterogeneous subfamily Bambusoideae and the basal lineages. Thirty-five grass sequences representing all six currently recognized major groups of the family and one outgroup sequence were analyzed using both parsimony and distance methods. The phylogenetic analyses indicated: (1) Puelia, a traditionally isolated bambusoid genus, is the most basal lineage in the BOP clade (Bambusoideae, Oryzoideae, and Pooideae); (2) the bambusoid clade is a sister group to the pooid clade; and (3) the monophyletic oryzoid clade is well separated from the bambusoid clade. The study further confirmed the recognition of two primary groups in the grass family: the BOP clade and the PACC clade (Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae); it also provided further evidence that the traditional subfamily Bambusoideae is highly heterogeneous and phylogenetically unacceptable. The data support Streptochaeteae, Anomochloeae, and Phareae as the most basal lineages among the extant grasses. Within the BOP clade, oryzoids and pooids are confirmed as two monophyletic clades, but the bambusoid clade, including only the woody bamboo tribe Bambuseae and the herbaceous bamboo tribe Olyreae, is relatively weakly supported. The study also indicated that the chloroplast noncoding region sequence data could be useful in phylogenetic analysis at relatively high taxonomic levels.  相似文献   

13.
A cladistic analysis of chloroplast DNA restriction site variation among representatives of all subfamilies of the grass family (Poaceae), using Joinvillea (Joinvilleaceae) as the outgroup, placed most genera into two major clades. The first of these groups corresponds to a broadly circumscribed subfamily Pooideae that includes all sampled representatives of Ampelodesmeae, Aveneae, Brachypodieae, Bromeae, Diarrheneae, Meliceae, Poeae, Stipeae, and Triticeae. The second major clade includes all sampled representatives of four subfamilies (Panicoideae [tribes Andropogoneae and Paniceae], Arundinoideae [Arundineae], Chloridoideae [Eragrostideae], and Centothecoideae [Centotheceae]). Within this group (the “PACC” clade), the Panicoideae are resolved as monophyletic and as the sister group of the clade that comprises the other three subfamilies. Within the latter group, Danthonia (Arundinoideae) and Eragroslis (Chloridoideae) are resolved as a stable monophyletic group that excludes Phragmites (Arundinoideae); this structure is inconsistent with the Arundinoideae being monophyletic as currently circumscribed. The PACC clade is placed within a more inclusive though unstable clade that includes the woody Bambusoideae (Bambuseae) plus several disparate tribes of herbaceous grasses of uncertain affinity that are often recognized as herbaceous Bambusoideae (Brachyelytreae, Nardeae, Olyreae, Oryzeae, and Phareae). Among eight most-parsimonious trees resolved by the analysis, four include a monophyletic Bambusoideae sensu lato (comprising Bambuseae and all five of these herbaceous tribes) as the sister group of the PACC clade; in the other four trees these bambusoid elements are not resolved as monophyletic, and the PACC clade is nested among these tribes. These results are consistent with those of previous analyses that resolve a basal or near-basal branch within the family between Pooideae and all other grasses. However, resolution by the present analysis of the PACC clade, which includes Centothecoideae, Chloridoideae, and Panicoideae, but excludes Bambusoideae, is inconsistent with the results of previous analyses that place Bambusoideae and Panicoideae in a monophyletic group that excludes Centothecoideae and Chloridoideae.  相似文献   

14.
Phylogenetic relationships withinChusquea,a diverse genus of neotropical woody bamboos, and among selected members of the Bambusoideae were explored usingrpl16intron sequence data from the chloroplast genome. Mechanisms of mutation, including slipped-strand mispairing, secondary structure, minute inversions, and base substitutions, were examined within therpl16intron, and their effects on sequence alignment and phylogenetic analysis were investigated. Thirty-five bamboo sequences were generated and two separate matrices were analyzed using maximum parsimony. In the first, 23 sequences fromChusquea,1 ofNeurolepis,and 3 outgroups were included.Neurolepiswas supported as sister toChusquea, Chusqueawas strongly supported as a monophyletic lineage, and three species ofChusqueasubg.Rettbergiawere resolved as the most basal clade within the genus. In the second analysis, 15 sequences, 14 from across the subfamily and 1 outgroup, were included. A Bambusoideae clade was recovered with the Olyreae/Parianeae (herbaceous bamboos) and the Bambuseae (woody bamboos) each supported as monophyletic. Two clades corresponding to temperate and tropical woody bamboos were derived within the Bambuseae and the tropical taxa were further split into New World and Old World clades. Therpl16intron in bamboos was found to be susceptible to frequent length mutations of multiple origins, nonindependent character evolution, and regions of high mutability, all of which created difficulties in alignment and phylogenetic analysis; nonetheless therpl16intron is phylogenetically informative at the inter- and intrageneric levels in bamboos.  相似文献   

15.
A nuclear gene, FLOWERING LOCUS T (FT) homolog, was cloned from Phyllostachys meyeri as PmFT. Its putative copy number was estimated as four by Southern blot analysis, and the two copies were completely sequenced. Twenty-seven FT homolog sequences of bambusoid and early diverging grasses comprised 172-bp exons, and 357- to 785-bp introns exhibited 0-58.9% pairwise divergence with six modal levels. Parsimony analyses of the FT homologs rooted at Pharus virescens produced six equally parsimonious trees. In the strict consensus tree, five clades were resolved; they were affected by divergence of the intron region rather than exon region. The basal clade was Puelioideae, followed by Olyreae clade including Oryza sativa. Streptogyneae clade combined the Olyreae clade with terminal sister clades of the Bambuseae, i.e., pantropical bamboos and East Asiatic temperate bamboos. The global topology suggested that FT homologs are significant for resolving the tribe level. However, the phylogeny of FT homologs does not resolve monophyly in Bambusoideae because of intercalary positioning by Streptogyneae clade. We discussed the role of FT homologs in controlling the inflorescence architecture and position of Streptogyneae in the bamboo phylogeny.  相似文献   

16.
Phylogenetic analyses of partial phytochrome B (PHYB) nuclear DNA sequences provide unambiguous resolution of evolutionary relationships within Poaceae. Analysis of PHYB nucleotides from 51 taxa representing seven traditionally recognized subfamilies clearly distinguishes three early-diverging herbaceous "bambusoid" lineages. First and most basal are Anomochloa and Streptochaeta, second is Pharus, and third is Puelia. The remaining grasses occur in two principal, highly supported clades. The first comprises bambusoid, oryzoid, and pooid genera (the BOP clade); the second comprises panicoid, arundinoid, chloridoid, and centothecoid genera (the PACC clade). The PHYB phylogeny is the first nuclear gene tree to address comprehensively phylogenetic relationships among grasses. It corroborates several inferences made from chloroplast gene trees, including the PACC clade, and the basal position of the herbaceous bamboos Anomochloa, Streptochaeta, and Pharus. However, the clear resolution of the sister group relationship among bambusoids, oryzoids, and pooids in the PHYB tree is novel; the relationship is only weakly supported in ndhF trees and is nonexistent in rbcL and plastid restriction site trees. Nuclear PHYB data support Anomochlooideae, Pharoideae, Pooideae sensu lato, Oryzoideae, Panicoideae, and Chloridoideae, and concur in the polyphyly of both Arundinoideae and Bambusoideae.  相似文献   

17.
Zhang YJ  Ma PF  Li DZ 《PloS one》2011,6(5):e20596

Background

Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies.

Methodology/Principal Findings

Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae.

Conclusions/Significance

The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly.  相似文献   

18.
This study presented the first molecular phylogenetic analysis of the major clades of woody bamboos of the Old World tropics based on nuclear and chloroplast sequences (ITS, GBSSI and trnL-F). Sequence data from 53 species, representing 17 paleotropical woody bamboo genera, were analyzed using the maximum parsimony and Bayesian inference methods. All examined ingroup taxa were clustered into two clades, i.e., the Bambusinae+Dinochloa clade and the Melocanninae clade. The former clade included Bambusa, Bonia, Dendrocalamus, Dendrocalamopsis, Dinochloa, Gigantochloa, Molecalamus, Neomicrocalamus, Neosinocalamus, Oxytenanthera s. str. (sensu stricto), Racemobambos and Thyrsostachys. The Melocanninae clade consisted of Cephalostachyum, Leptocanna (better treated as part of Cephalostachyum), Melocanna, Pseudostachyum and Schizostachyum s. str. The subtribe Racemobambosinae and tribes Dendrocalameae and Oxytenanthereae were not supported and may be better placed in subtribe Bambusinae. The ovary characters seemed to be good criteria to distinguish these two clades. The reconstruction of ancestral fruit characters indicated that the bacoid caryopsis, namely, fleshy or berry-like fruits, was found to be scattered in three lineages of the examined paleotropical woody bamboos. Fruit characters are thus not reliable indicators of phylogeny and bacoid caryopsis likely represents a specialization for particular ecological conditions.  相似文献   

19.
Thamnocalamus , Fargesia and Yushania, of the alpine bamboos and one species of Ampelocalamus as an out-group were studied. The results indicated that Thamnocalamus spathiflorus var. crassinodus and the Fargesia spathacea clade form the basal groups but bootstrap support was weak. Among the rest of the species, including species previously placed in Fargesia (plus Borinda) and Yushania, the F. yunnanensis subclade and the F. communis subclade were recognized but internal support for such groups was again low. The result indicated that, Fargesia and Yushania as delimited by morphological characters, are not monophyletic in the ITS phylogeny and require further resolution. We revealed relatively high levels of genetic variability in the alpine bamboos and showed that the ITS region could be used to improve generic delimitation of the woody bamboos in general. Received 18 September 2000/ Accepted in revised form 9 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号