首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How predators impact on prey population dynamics is still an unsolved issue for most wild predator–prey communities. When considering vertebrates, important concerns constrain a comprehensive understanding of the functioning of predator–prey relationships worldwide; e.g. studies simultaneously quantifying ‘functional’ and ‘numerical responses’ (i.e., the ‘total response’) are rare. The functional, the numerical, and the resulting total response (i.e., how the predator per capita intake, the population of predators and the total of prey eaten by the total predators vary with prey densities) are fundamental as they reveal the predator’s ability to regulate prey population dynamics. Here, we used a multi-spatio-temporal scale approach to simultaneously explore the functional and numerical responses of a territorial predator (Bonelli’s eagle Hieraaetus fasciatus) to its two main prey species (the rabbit Oryctolagus cuniculus and the red-legged partridge Alectoris rufa) during the breeding period in a Mediterranean system of south Spain. Bonelli’s eagle responded functionally, but not numerically, to rabbit/partridge density changes. Type II, non-regulatory, functional responses (typical of specialist predators) offered the best fitting models for both prey. In the absence of a numerical response, Bonelli’s eagle role as a regulating factor of rabbit and partridge populations seems to be weak in our study area. Simple (prey density-dependent) functional response models may well describe the short-term variation in a territorial predator’s consumption rate in complex ecosystems.  相似文献   

2.
Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator–prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator–predator interference effects.  相似文献   

3.
The increased temperature associated with climate change may have important effects on body size and predator–prey interactions. The consequences of these effects for food web structure are unclear because the relationships between temperature and aspects of food web structure such as predator–prey body-size relationships are unknown. Here, we use the largest reported dataset for marine predator–prey interactions to assess how temperature affects predator–prey body-size relationships among different habitats ranging from the tropics to the poles. We found that prey size selection depends on predator body size, temperature and the interaction between the two. Our results indicate that (i) predator–prey body-size ratios decrease with predator size at below-average temperatures and increase with predator size at above-average temperatures, and (ii) that the effect of temperature on predator–prey body-size structure will be stronger at small and large body sizes and relatively weak at intermediate sizes. This systematic interaction may help to simplify forecasting the potentially complex consequences of warming on interaction strengths and food web stability.  相似文献   

4.
5.
We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators’ demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account for qualitatively different predator types by adjusting parameter values, we mainly focused on ‘true’ predators that kill their prey. The resulting model explains various empirical observations, such as the triangular distribution of predator–prey size combinations, the island rule, and the difference in predator–prey size ratios between filter feeders and raptorial feeders. The model also reveals key factors for the evolution of predator–prey size ratios. Capture mechanisms turned out to have a large effect on this ratio, while prey-size availability and competition for resources only help explain variation in predator size, not variation in predator–prey size ratio. Predation among predators is identified as an important factor for deviations from the optimal predator–prey size ratio.  相似文献   

6.
This paper deals with the problem of non-selective harvesting of a prey–predator system by using a reasonable catch-rate function instead of usual catch-per-unit-efforthypothesis. Here both the prey and the predator species obey the law of logistic growth. We have taken the predator functional response to prey density in such a form that each predator's functional response to the prey density approaches a constant as the prey population increases. Boundedness of the exploited system is examined. The existence of its steady states and their stability (local and global) are studied using Eigenvalue analysis. The existence of bionomic equilibria has been illustrated using a numerical example. The problem of determining the optimal harvesting policy is then solved by using Pontryagin's maximum principle.  相似文献   

7.
In this paper, we have proposed and analyzed a mathematical model of an infected predator-prey system with different predators' functional response. The existence and uniqueness of solutions are established and solutions are shown to be uniformly bounded for all nonnegative initial values. Our overall mathematical and biological studies reveal that if the prey population is infected by a lethal disease, coexistence of all three species (i.e. host, parasite and predator) for any of three functional responses is never possible but different interesting dynamical behaviors are possible by varying two key parameters viz. the rate of infection and the attack rate on susceptible prey. Interplay between these two factors yields a diverse array of biologically relevant behavior, including switching of stability, extinction and oscillations.  相似文献   

8.
The functional response is a key element in predator–prey models as well as in food chains and food webs. Classical models consider it as a function of prey abundance only. However, many mechanisms can lead to predator dependence, and there is increasing evidence for the importance of this dependence. Identification of the mathematical form of the functional response from real data is therefore a challenging task. In this paper we apply model-fitting to test if typical ecological predator–prey time series data, which contain both observation error and process error, can give some information about the form of the functional response. Working with artificial data (for which the functional response is known) we will show that with moderate noise levels, identification of the model that generated the data is possible. However, the noise levels prevailing in real ecological time-series can give rise to wrong identifications. We will also discuss the quality of parameter estimation by fitting differential equations to such time-series.  相似文献   

9.
The emergence of spatiotemporal patterns in the distribution of species is one of the most striking phenomena in ecology and nonlinear science. Since it is known that spatial inhomogeneities can significantly affect the dynamics of ecological populations, in the present paper we investigate the impact of environmental variability on the formation of patterns in a spatially extended predator–prey model. In particular, we utilize a predator–prey system with a Holling III functional response and introduce random spatial variations of the kinetic parameter signifying the intrinsic growth rate of the prey, reflecting the impact of a heterogeneous environment. Our results reveal that in the proximity of the Hopf bifurcation environmental variability is able to provoke pattern formation, whereby the coherence of the patterns exhibits a resonance-like dependence on the variability strength. Furthermore, we show that the phenomenon can only be observed if the spatial heterogeneities exhibit large enough regions with high growth rates of the prey. Our findings thus indicate that variability could be an essential pattern formation mechanism of the populations.  相似文献   

10.
A general predator is assumed to divide its hunting time between two sub-habitats with different prey species, spending a larger fraction (φ) of search time in an area as the relative prey abundance there increases. This always causes switching in the model, and changes a functional response from one that imposes a risk on the average prey that decreases with prey density in the direction of one that imposes an increasing risk. I discuss the conditions for a response that is density dependent, and those predatory attributes that make such a response more likely. Transit time between subhabitats always increases the density dependent effect, and is necessary for “system stability” in a Lotka-Volterra model with two prey species. Experiments have confirmed the model's basic assumption. General predators do not fit easily into classical predator-prey models of simple “closed” communities, and then the degree of density dependence of the functional response becomes a useful measure of a predator's short-term stabilizing effect on a prey species. The model demonstrates how spatial heterogeneity can be stabilizing.  相似文献   

11.
In this paper, we consider spatial predator–prey models with diffusion and prey-taxis. We investigate necessary conditions for pattern formation using a variety of non-linear functional responses, linear and non-linear predator death terms, linear and non-linear prey-taxis sensitivities, and logistic growth or growth with an Allee effect for the prey. We identify combinations of the above non-linearities that lead to spatial pattern formation and we give numerical examples. It turns out that prey-taxis stabilizes the system and for large prey-taxis sensitivity we do not observe pattern formation. We also study and find necessary conditions for global stability for a type I functional response, logistic growth for the prey, non-linear predator death terms, and non-linear prey-taxis sensitivity.  相似文献   

12.
Use of additional/alternative food source to predators is one of the widely recognised practices in the field of biological control. Both theoretical and experimental works point out that quality and quantity of additional food play a vital role in the controllability of the pest. Theoretical studies carried out previously in this direction indicate that incorporating mutual interference between predators can stabilise the system. Experimental evidence also point out that mutual interference between predators can affect the outcome of the biological control programs. In this article dynamics of additional food provided predator–prey system in the presence of mutual interference between predators has been studied. The mutual interference between predators is modelled using Beddington–DeAngelis type functional response. The system analysis highlights the role of mutual interference on the success of biological control programs when predators are provided with additional food. The model results indicate the possibility of stable coexistence of predators with low prey population levels. This is in contrast to classical predator–prey models wherein this stable co-existence at low prey population levels is not possible. This study classifies the characteristics of biological control agents and additional food (of suitable quality and quantity), permitting the eco-managers to enhance the success rate of biological control programs.  相似文献   

13.
In this paper we propose a mathematical learning model for the feeding behaviour of a specialist predator operating in a random environment occupied by two types of prey, palatable mimics and unpalatable models, and a generalist predator with additional alternative prey at its disposal. A well known linear reinforcement learning algorithm and its special cases are considered for updating the probabilities of the two actions, eat prey or ignore prey. Each action elicits a probabilistic response from the environment that can be favorable or unfavourable. To assess the performance of the predator a payoff function is constructed that captures the energetic benefit from consuming acceptable prey, the energetic cost from consuming unacceptable prey, and lost benefit from ignoring acceptable prey. Conditions for an improving predator payoff are also explicitly formulated.  相似文献   

14.
In this paper, we consider a system of integrodifferential equations which models a predator-prey system with both species (predator and prey) age-structured and predators living only on the eggs of prey. The present model is a generalization of the model given in [20]. The existence, stability, and instability of nonnegative equilibria is studied assuming a general fecundity rate function for the prey. With a special choice of fecundity rate function for the predator it is shown here that a large maturation period m of the predator leads to stability. This seems to be contrary to the usual rule of thumb that increasing delays in growth rate responses cause instabilities.  相似文献   

15.
The influence of a resource subsidy on predator–prey interactions is examined using a mathematical model. The model arises from the study of a biological system involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). In one version of the model, the predator, prey and subsidy all occur in the same location; in a second version, the predator moves between two patches, one containing only the prey and the other containing only the subsidy. Criteria for feasibility and stability of the different equilibrium states are studied both analytically and numerically. At small subsidy input rates, there is a minimum prey carrying capacity needed to support both predator and prey. At intermediate subsidy input rates, the predator and prey can always coexist. At high subsidy input rates, the prey cannot persist even at high carrying capacities. As predator movement increases, the dynamic stability of the predator–prey-subsidy interactions also increases.  相似文献   

16.
Estimating the prevalence and strength of non-independent predator effects   总被引:2,自引:0,他引:2  
Understanding whether multiple predator species have independent effects on shared prey is critical for understanding community dynamics. We describe the prevalence and strength of non-independence between predators by quantifying the prey’s risk of predation and the degree to which it deviates from the risk predicted from a null model of independent predator effects. Specifically, we document how frequently non-independent effects occur among ten different multiple predator combinations with mayfly larvae as prey. These predator combinations vary both predator density and predator species richness. Overall, the predator effects were non-independent and translated to an average of 27% fewer prey being consumed compared to independent predator effects. Non-independence of this magnitude is likely to have population level consequences for the prey and influence the distribution or prey preference of predators. Closer inspection shows that much of the risk reduction in this system is weak, to the point of being indistinguishable from independent predator effects, while few effects are strong. This pattern of many weak interactions and few strong ones parallels the pattern of interaction strengths documented previously in intertidal communities. Consequently, understanding strong interactors in multiple predator systems may help us understand the importance of a species.  相似文献   

17.
Ecological theory suggests that prey size should increase with predator size, but this trend may be masked by other factors affecting prey selection, such as environmental constraints or specific prey preferences of predator species. Owls are an ideal case study for exploring how predator body size affects prey selection in the presence of other factors due to the ease of analyzing their diets from owl pellets and their widespread distributions, allowing interspecific comparisons between variable habitats. Here, we analyze various dimensions of prey resource selection among owls, including prey size, taxonomy (i.e., whether or not particular taxa are favored regardless of their size), and prey traits (movement type, social structure, activity pattern, and diet). We collected pellets of five sympatric owl species (Athene noctua, Tyto alba, Asio otus, Strix aluco, and Bubo bubo) from 78 sites across the Mediterranean Levant. Prey intake was compared between sites, with various environmental variables and owl species as predictors of abundance. Despite significant environmental impacts on prey intake, some key patterns emerge among owl species studied. Owls select prey by predator body size: Larger owls tend to feed on wider ranges of prey sizes, leading to higher means. In addition, guild members show both specialization and generalism in terms of prey taxa, sometimes in contrast with the expectations of the predator–prey body size hypothesis. Our results suggest that while predator body size is an important factor in prey selection, taxon specialization by predator species also has considerable impact.  相似文献   

18.
Since generalist predators feed on a variety of prey species they tend to persist in an ecosystem even if one particular prey species is absent. Predation by generalist predators is typically characterized by a sigmoidal functional response, so that predation pressure for a given prey species is small when the density of that prey is low. Many mathematical models have included a sigmoidal functional response into predator–prey equations and found the dynamics to be more stable than for a Holling type II functional response. However, almost none of these models considers alternative food sources for the generalist predator. In particular, in these models, the generalist predator goes extinct in the absence of the one focal prey. We model the dynamics of a generalist predator with a sigmoidal functional response on one dynamic prey and fixed alternative food source. We find that the system can exhibit up to six steady states, bistability, limit cycles and several global bifurcations.  相似文献   

19.
  • 1 In predator–prey theory, habitat heterogeneity can affect the relationship between kill rates and prey or predator density through its effect on the predator's ability to search for, encounter, kill and consume its prey. Many studies of predator–prey interactions include the effect of spatial heterogeneity, but these are mostly based on species with restricted mobility or conducted in experimental settings.
  • 2 Here, we aim to identify the patterns through which spatial heterogeneity affects predator–prey dynamics and to review the literature on the effect of spatial heterogeneity on predator–prey interactions in terrestrial mammalian systems, i.e. in freely moving species with high mobility, in non‐experimental settings. We also review current methodologies that allow the study of the predation process within a spatial context.
  • 3 When the functional response includes the effect of spatial heterogeneity, it usually takes the form of predator‐dependent or ratio‐dependent models and has wide applicability.
  • 4 The analysis of the predation process through its different stages may further contribute towards identifying the spatial scale of interest and the specific spatial mechanism affecting predator–prey interactions.
  • 5 Analyzing the predation process based on the functional response theory, but separating the stages of predation and applying a multiscale approach, is likely to increase our insight into how spatial heterogeneity affects predator–prey dynamics. This may increase our ability to forecast the consequences of landscape transformations on predator–prey dynamics.
  相似文献   

20.
Investigating how prey density influences a prey’s combined predation risk from multiple predator species is critical for understanding the widespread importance of multiple predator effects. We conducted experiments that crossed six treatments consisting of zero, one, or two predator species (hellgrammites, greenside darters, and creek chubs) with three treatments in which we varied the density of mayfly prey. None of the multiple predator effects in our system were independent, and instead, the presence of multiple predator species resulted in risk reduction for the prey across both multiple predator combinations and all three levels of prey density. Risk reduction is likely to have population-level consequences for the prey, resulting in larger prey populations than would be predicted if the effects of multiple predator species were independent. For one of the two multiple predator combinations, the magnitude of risk reduction marginally increased with prey density. As a result, models predicting the combined risk from multiple predator species in this system will sometimes need to account for prey density as a factor influencing per-capita prey death rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号